期刊文献+

基于正则自编码器及Optuna寻优的异常用电数据清洗研究 被引量:2

Abnormal power consumption data cleaning based on regular self-encoding and Optuna optimization
下载PDF
导出
摘要 为有效解决用电信息采集系统中电量数据丢失问题,提出基于正则自编码器的缺失数据填补方法。首先,根据正则自编码器学习到的特征重构电量数据,实现缺失数据的修复。然后,通过对损失函数增加L21范数及正交约束实现正则化,提升模型的泛化能力,并采用Optuna实现超参数的自动寻优。最后,实际数据集的测试结果表明:与其他自编码器相比,正则自编码器能够较为准确地补齐缺失数据。 In order to effectively solve the problem of consumption loss in the electric energy information acquisition system,a method of filling missing data based on regular self-encoders is proposed.Firstly,the energy data according to the characteristics learned by the regular autoencoder is reconstructed,and the repair of the missing data is realized.Then,regularization by adding the L21-norm is realized and orthogonal constraints to the loss function,the generalization ability of the model and uses Optuna to realize the automatic optimization of hyperparameters is improved.Finally,the test results of the actual data set show that compared with other autoencoders,the regular autoencoder can accurately fill in the missing data.
作者 陈慧 陈适 郭银婷 连淑婷 王康 韦先灿 CHEN Hui;CHEN Shi;GUO Yinting;LIAN Shuting;WANG Kang;WEI Xiancan(Marketing Service Center,State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350001,China;College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China)
出处 《电力需求侧管理》 2023年第5期53-58,共6页 Power Demand Side Management
基金 国网福建省电力有限公司科技项目(52130X21001A)。
关键词 异常数据清洗 自编码器 正则化 Optuna寻优 abnormal data cleaning self-encoder regularization Optuna optimization
  • 相关文献

参考文献13

二级参考文献151

共引文献192

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部