摘要
Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.
基金
Project supported by the National Natural Science Foundation of China(Nos.U2241267,12172155
11872195)。