摘要
为了弥补现有钢-聚乙烯醇(PVA)混杂纤维增强工程水泥基复合材料造价过高、工程应用面狭窄的缺陷,本文通过使用廉价的国产PVA纤维部分替代日产PVA纤维制备出一种新型的多元混杂纤维增强工程水泥基复合材料(MFECC)。研究MFECC材料薄板试件的弯曲性能和破坏形态,对试件的弯曲韧性和性价比进行评价,并通过SPSS软件的多元非线性回归法建立极限弯曲性能预测模型。结果表明,引入国产PVA纤维后MFECC薄板的应变硬化力学行为和多缝开裂现象相较于仅掺日产PVA纤维时有所降低,但仍具有较高的强度与延性。当钢纤维、日产PVA纤维和国产PVA纤维体积掺量分别为0.2%、0%和2.0%时,MFECC的极限拉伸应变为4.4%,抗压强度为46.39 MPa,极限抗弯挠度可达12.697 mm,性价比最高。建立的MFECC薄板试件的极限弯曲性能预测模型对试验值的拟合度良好。
In order to remedy the defects of existing steel-polyvinyl alcohol(PVA)hybrid fiber engineered cementitious composites in terms of high cost and narrow engineering applications,in this paper,a new multicomponent hybrid fiber engineered cementitious composite(MFECC)was prepared by partially replacing Japanese PVA fibers with cheap domestic PVA fibers.The flexural performance and damage morphology of MFECC sheet specimens were studied,the flexural toughness and cost-effectiveness of specimens were evaluated,and the ultimate flexural performance prediction model was established by multiple non-linear regression method of SPSS software.The results show that the strain-hardening mechanical behavior and multiple cracking phenomenon of MFECC sheet after the introduction of domestic PVA fibers are reduced compared with that when only Japanese PVA fibers are mixed,but it still has high strength and ductility.When the volume admixture of steel fiber,Japanese PVA and domestic PVA fiber are 0.2%,0% and 2.0%,MFECC ultimate tensile strain is 4.4%,compressive strength is 46.39 MPa,and ultimate flexural deflection reaches 12.697 mm,which has the highest cost-effectiveness.The established model for predicting ultimate flexural performance of MFECC sheet specimens has a good fit to the test values.
作者
张品乐
邓让
胡静
吴磊
陶忠
ZHANG Pinle;DENG Rang;HU Jing;WU Lei;TAO Zhong(Faculty of Civil Engineering and Architecture,Kunming University of Science and Technology,Kunming 650500,China)
出处
《硅酸盐通报》
CAS
北大核心
2023年第9期3125-3134,共10页
Bulletin of the Chinese Ceramic Society
基金
国家自然科学基金(52168069,51568028)。
关键词
水泥基材料
混杂纤维
四点弯曲
弯曲韧性
非线性回归
cementitious material
hybrid fiber
four-point flexural
flexural toughness
nonlinear regression