摘要
针对地铁系统严苛的运行环境,为提高不间断电源(UPS)系统维护维修效率,提出了一种UPS智能监控技术设计方案,通过对UPS系统铝电解电容、IGBT等关键元器件运行情况进行实时监测,采集其相关数据,然后对这些数据进行分析研究,根据相关数学模型计算UPS相关部件的剩余使用寿命数据,智能监控UPS系统的健康状况,对影响UPS系统健康状况的情况进行预警提醒,根据设计方案,采用模块化设计、防尘设计,研制出了相应的样机,样机的运行能正确显示UPS系统各关键部件的运行状况、剩余使用寿命等相关信息,能正确显示整机的运行信息,可以实时掌握UPS系统的健康状况,提高UPS系统的维护维修效率,降低维护维修成本,保障地铁系统电力供应的稳定、可靠,实现预期目标。
In view of the harsh operation environment of the subway system,in order to improve the maintenance efficiency of the UPS power supply system,a design scheme of UPS intelligent monitoring technology is proposed.Through real-time monitoring of the operation of key components such as aluminium electrolytic capacitor and IGBT in the UPS power supply system,relevant data are collected,and then these data are analyzed and studied.The remaining service life data of relevant UPS components are calculated according to relevant mathematical models,intelligent monitoring of the health status of the UPS system,providing early warning and reminders for situations that may affect the health status of the UPS system.Based on the design scheme,a modular design and dustproof design have been adopted to develop a corresponding prototype.The operation of the prototype can correctly display the operation status,remaining service life,and other related information of key components of the UPS power system,and can correctly display the operation information of the entire machine,enabling real-time understanding of the health status of the UPS power system,improve the maintenance and repair efficiency of the UPS system,reduce maintenance and repair costs,ensure the stability and reliability of the subway system's power supply,and achieve the expected goals.
作者
唐赓
戴宏跃
郭志强
余远峰
张宏煕
Tang Geng;Dai Hongyue;Guo Zhiqiang;Yu Yuanfeng;Zhang Hongxi(Power Supply Branch,Beijing Metro Operation Co.,Ltd.,Beijing 100044,China;School of Intelligent Manufacturing,Guangzhou Vocational College of Technology&Business,Guangzhou 511442,China;Guangdong Chuangdian Technology Co.,Ltd.,Foshan,Guangdong 528200,China)
出处
《机电工程技术》
2023年第8期105-109,共5页
Mechanical & Electrical Engineering Technology
基金
广东省高校高端电源系统开发中心项目(2019GGCZX002)
北京市地铁运营有限公司供电分公司科研项目(2022000504084001)
广东省普通高校特色创新项目(2022KTSCX300)
2022年度广州市基础研究计划基础与应用基础研究项目(202201011576)。
关键词
智能
离线式
预警
intelligent
off-line
early warning