期刊文献+

基于46个基因的预测三阴性乳腺癌患者新辅助化疗疗效模型的构建和优化

Construction and optimization of neoadjuvant chemotherapy efficacy model for triple negative breast cancer patients based on 46 genes
下载PDF
导出
摘要 目的 通过构建和优化基于46个基因的三阴性乳腺癌(TNBC)患者新辅助化疗(NAC)疗效的预测模型,提供一种对患者进行精准分型的方法,更好地促进NAC在TNBC治疗中的应用。方法 从基因表达综合(GEO)数据库的公共数据集(GSE163882)获取221个接受NAC的TNBC患者的全基因组数据,进行模型构建特征基因的筛选和过滤,构建预测TNBC患者NAC疗效的模型。评估不同基因数构建的7种不同机器学习算法对TNBC患者NAC疗效的预测价值,最后利用深度神经网络模型进行优化。结果 对221个患者样本的基因进行模型构建特征基因的筛选和过滤后,获得46个差异表达基因作为最后模型构建特征数。通过7种机器学习模型的测试及优化后发现,线性判别分析模型预测TNBC患者NAC疗效的准确率达到85.00%,后续利用深度神经网络模型优化,可使预测的准确率提高到90.00%,相比于7种模型均有显著提高。结论 基于基因表达数目构建的模型具有预测TNBC患者NAC疗效的作用,可为后期的病情预测提供参考依据。 Objective To provide a method for accurate typing of patients by constructing a prediction model for the efficacy of neoadjuvant chemotherapy(NAC)in triple negative breast cancer(TNBC)based on expression of 46 genes,and to promote the application of NAC in the treatment of TNBC.Method The whole-genome transcriptome informa-tion of 221 breast cancer patients who received NAC was obtained from the public data sets(GSE163882)of Gene Ex-pression Omnibus(GEO).Based on the obtained patient information and data,the characteristic genes of model construc-tion were screened and filtered,and the model predicting efficacy of NAC in TNBC patients was constructed.Evaluate the predictive value of 7 different machine learning algorithms constructed with different gene numbers for the efficacy of NAC in TNBC patients,and finally optimize them using a deep neural network model.Result After screening and filter-ing the characteristic genes of 221 patient samples for model construction,46 differentially expressed genes were ob-tained as the final model construction characteristic values.After testing and optimization the 7 machine learning models,it was found that the accuracy of the linear discriminant analysis model reached 85.00%,and the subsequent optimization of the deep neural network model improved the accuracy of the prediction to 90.00%,which was significantly improved compared with the seven models.Conclusion The model constructed based on gene expression level can predict the effi-cacy of NAC in TNBC patients,which can provide reference for subsequent disease prediction.
作者 谢文倩 庄颖 刘智威 张恋恋 袁沛怡 龚浩 XIE Wenqian;ZHUANG Ying;LIU Zhiwei;ZHANG Lianlian;YUAN Peiyi;GONG Hao(School of Life Science,Huizhou University,Huizhou 516007,Guangdong,China)
出处 《癌症进展》 2023年第15期1646-1650,共5页 Oncology Progress
基金 广东省科技创新战略专项资金项目(pdjh2021b0477)。
关键词 三阴性乳腺癌 传统机器算法 深度神经网络 triple negative breast cancer traditional machine algorithm deep neural network
  • 相关文献

参考文献20

二级参考文献174

  • 1李冬梅.疾病不确定感对乳腺癌术后患者治疗依从性、肩关节活动度及日常生活活动能力的影响[J].中华物理医学与康复杂志,2006,28(11):760-763. 被引量:13
  • 2葛冰磊,洪学军,王青青.雌激素和孕激素对人乳腺癌细胞MCF-7 RCAS1表达的影响[J].检验医学,2007,22(2):114-118. 被引量:2
  • 3WINGO P A,TONG T,BOLDEN S.Cancer statistics[J].CA Cancer J Clin,1995,45:8-30.
  • 4HADJIISKI L,SAHINER B,CHAN H P.Advances in cornpurer-aided diagnosis for breast cancer[J].Current Opinion in Obstetrics and Gynecology,2006,18:64-70.
  • 5POLAT K,SAHAN S,KODAZ H,et al.A new classification method for breast cancer diagnosis:feature selection artificial immune recognition system(FS-AIRS)[J].LNCS,2005,3611:830-838.
  • 6PENA-REYES C A,SIPPER M.A fuzzy-genetic approach to breast cancer diagnosis[J].Artificial Intelligence in Medicine,1999,17:131-155.
  • 7VAPNIK V.The nature of statistical learning theory[M].New York:Springer.1995.
  • 8CAI C Z,HAN L Y,JI Z L,et al.SVM-Prot:web-based support vector machine software for functional classification of a protein from its primary sequence[J].Nucleic Acids Research,2003,31:3692-3697.
  • 9CAI C Z,HAN L Y,JI Z L,et al.Enzyme family classification by support vector machines[J].Proteins,2004,55:66-76.
  • 10CAI C Z,WANG W L,CHEN Y Z.Support vector machine classification of physical and biological datasets[J].International Journal of Modern Physics C,2003,14:575-585.

共引文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部