期刊文献+

基于深度学习的人脸识别系统 被引量:5

Face Recognition System Based on Deep Learning
下载PDF
导出
摘要 为了提高人脸识别的精度和性能,基于深度学习算法设计并实现了一种实时的人脸识别系统,并分析该系统完成人脸识别任务的基本流程。构建的人脸识别系统采用MTCNN(多任务级联神经网络)作为人脸检测算法,融合KNN(K最邻近分类算法)的FaceNet人脸识别方法,利用FaceNet进行人脸表征,基于KNN进行人脸特征分类。对设计的人脸识别系统分别进行识别率测试、响应时间测试、复杂环境干扰测试;结果表明:系统准确率达到98%,在线平均响应时间为0.67 s,在眼、嘴、耳、鼻部位遮挡比例为50%的环境下识别成功率平均约为72%,验证了系统的可行性及算法的有效性。 In order to improve the accuracy and performance of face recognition,this paper proposes to design and implement a real-time face recognition system based on deep learning algorithm,and analyze the process of completing facial recognition tasks.The proposed face recognition system uses MTCNN(Multi-task Cascaded Neural Network)as the face detection algorithm,and integrates the FaceNet face recognition method of KNN(K-Nearest Neighbor Classification Algorithm).FaceNet is used for facial representation,and facial features are classified based on KNN.Recognition rate testing,response time testing,and complex environmental interference testing are conducted on the proposed face recognition system.The results show that the recognition accuracy of the system reaches 98%,with an online average response time of 0.67 seconds,and the recognition success rate reaches 72%on average in an environment where the occlusion ratio of the eyes,mouth,ears,and nose is 50%.The feasibility of the system and the effectiveness of the algorithm are thus verified.
作者 林平荣 吴梓华 陈鑫 施晓权 LIN Pingrong;WU Zihua;CHEN Xin;SHI Xiaoquan(Institute of Software,Software Engineering Institute of Guangzhou,Guangzhou 510990,China;School of Computer Engineering,Guangzhou College of South China University of Technology,Guangzhou 510800,China;College of Artificial Intelligence,Guangdong Mechanical&Electrical Polytechnic,Guangzhou 510550,China)
出处 《软件工程》 2023年第10期53-57,共5页 Software Engineering
基金 广州市哲学社会科学发展“十四五”规划2021年度共建课题(2021GZGJ179) 广州软件学院科研项目(KY202109)。
关键词 深度学习 人脸识别 FaceNet MTCNN KNN deep learning face recognition FaceNet MTCNN KNN
  • 相关文献

参考文献6

二级参考文献90

  • 1邬向前,王宽全,张大鹏.一种用于掌纹识别的线特征表示和匹配方法(英文)[J].软件学报,2004,15(6):869-880. 被引量:28
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.

共引文献1084

同被引文献29

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部