期刊文献+

基于参数化滤波的旋转设备特征频率提取

Feature frequency extraction of rotating equipment based on parameterized filtering
下载PDF
导出
摘要 针对强背景噪声下的特征提取问题,提出一种基于参数化滤波的旋转设备特征频率提取方法。对目标特征频率进行瞬时频率的初步提取;利用傅里叶基函数对初始瞬时频率进行拟合,得到所需特征频率的瞬时频率;根据提取出的瞬时频率和瞬时幅值重构出提取后的频谱图,从而达到对噪声进行抑制并准确提取所需特征频率的目的。使用仿真信号验证了该方法的有效性,对齿轮传动系统中行星齿轮箱振动数据、轴承外圈故障振动数据及轴承外圈早期故障进行试验分析。结果表明,该方法能有效提高信号的信噪比,准确提取特征频率,增强故障特征。 Here,aiming at feature extraction problems under strong background noise,a feature frequency extraction method for rotating equipment based on parameterized filtering was proposed.Firstly,preliminary extraction of instantaneous frequency was performed for target feature frequency.Secondly,initial instantaneous frequency was fitted using Fourier basis functions to obtain instantaneous frequency of the required feature frequency.Finally,based on the extracted instantaneous frequency and instantaneous amplitude,the extracted spectrum was reconstructed to suppress noise and accurately extract the required feature frequency.The effectiveness of the proposed method was verified using simulation signals,and test analyses were conducted for vibration data of planetary gearbox,bearing outer ring fault vibration data,and vibration data of bearing outer ring early faults in a gear transmission system.The results showed that the proposed method can effectively improve signal-to-noise ratios of signals,accurately extract feature frequencies,and enhance fault features.
作者 位莎 杨阳 杜明刚 何清波 彭志科 WEI Sha;YANG Yang;DU Minggang;HE Qingbo;PENG Zhike(State Key Lab of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;State Key Lab of Vehicle Transmission,China North Vehicle Institute,Beijing 100072,China;College of Mechanical Engineering,Ningxia University,Yinchuan 750021,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第17期203-209,283,共8页 Journal of Vibration and Shock
基金 基础研究项目(20195208003)。
关键词 参数化滤波 特征频率提取 故障诊断 信号分解 parameterized filtering feature frequency extraction fault diagnosis signal decomposition
  • 相关文献

参考文献7

二级参考文献51

  • 1张超,陈建军.基于EMD降噪和谱峭度的轴承故障诊断方法[J].机械科学与技术,2015,34(2):252-256. 被引量:21
  • 2石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 3胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 4梅宏斌.滚动轴承振动监测与诊断--理论·方法·系统[M].北京:机械工业出版社,1996.
  • 5Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 763 - 788.
  • 6Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet [J]. Mechanical Systems and Signal Processing, 2002,16 (4) : 677 - 694.
  • 7Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc. R. Soc, 1998,454:903 - 905.
  • 8Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation[ C ]. International Conference On Acoustics, Speech, and Signal Processing, Boston, 1983, 607 - 610.
  • 9Antoni J. The spectral kurtosis: A useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20:282 - 307.
  • 10Antoni J, Randall R B, The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006, 20 : 308 - 331.

共引文献286

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部