期刊文献+

热泵中氨基甲酸铵分解反应特性及反应器结构优化

Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump
下载PDF
导出
摘要 化学热泵可以高效地对低品位热进行提质,特别是在高温热泵方面比常规热泵系统更具独特的优势。氨基甲酸铵(AC)可以在20~100℃之间发生分解反应,且反应焓高达2010kJ/kg。本文对热泵工况下氨基甲酸铵/乙二醇溶液分解反应器进行了模拟,研究了热泵工况下不同反应条件(溶液浓度、溶液流速、热源温度)对分解过程的影响,并对AC分解反应器的管形和结构进行优化分析。结果表明热源温度越高,停留时间越长,平均转化率和反应速率越高,而溶液浓度对分解反应过程产生的影响不大。流速研究范围内平均转化率提高了5~11倍,反应速率提高了2~4倍,热源温度研究范围内平均转化率可提高2~4倍。基于参数影响规律,利用数值模拟和响应曲面分析优化了反应器的结构参数,如螺旋半径、螺旋管直径和螺旋圈数等。结构优化后,平均转化率提高至50.3%,最终获得了适用于热泵工况AC分解的反应器结构,为搭建基于氨基甲酸铵的热泵系统奠定了基础。 As a promising material,ammonium carbamate can be decomposed under the temperature from 20℃to 100℃,and the reaction enthalpy reaches the high value of 2010kJ/kg.The effects of various conditions on the decomposition process of ammonium carbamate were discussed,such as solution concentration,flow rate and the temperature of heat source.Results showed that the higher temperature of heat source and the longer residence time contributed to a higher rate of reaction conversion and decomposition.But the solution concentration was less sensitive to decomposition process.The average conversion rate and the reaction rate in the research range of flow rate were increased by 5—11 times and 2—4 times,respectively.And the upgrade of heat source temperature contributed to a 2—4 times increase in the average conversion rate.Based on the analysis,numerical simulation and response surface analysis were used to optimize the structural parameters of the reactor,such as spiral radius,tube diameter and the number of turns.After structure optimization,the average conversion rate could be increased to 50.3%,and a reactor structure suitable for AC decomposition in heat pump conditions was finally obtained.
作者 刘炫麟 王驿凯 戴苏洲 殷勇高 LIU Xuanlin;WANG Yikai;DAI Suzhou;YIN Yonggao(School of Energy and Environment,Southeast University,Nanjing 210096,Jiangsu,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2023年第9期4522-4530,共9页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(52076039)。
关键词 反应器 反应特性 数值模拟 优化设计 氨基甲酸铵 热泵 reactors reaction characteristics numerical simulation optimal design ammonium carbamate heat pump
  • 相关文献

参考文献4

二级参考文献52

  • 1钱晓农.碳酸氢铵热分解动力学研究[J].云南化工,1994,21(1):20-22. 被引量:6
  • 2左远志,丁静,杨晓西.蓄热技术在聚焦式太阳能热发电系统中的应用现状[J].化工进展,2006,25(9):995-1000. 被引量:33
  • 3Herrmann U, Kearney D W. Survey of thermal energy storage for parabolic trough power plants[J], J. Sol. Energy Eng., 2002, 124 (2): 145-152.
  • 4Dunn R I, Hearps P J, Wright M N. Molten-salt power towers: Newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100 (2): 504-515.
  • 5Acem Z, Lopez J, Palomo E. KNO3/NaNO3 graphite materials for thermal energy storage at high temperature: Part I. Elaboration methods and thermal properties[J]. Appl. Therm. Eng., 2010, 30( 13): 1580-1585.
  • 6Shin D Y, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. Int. J. Heat Mass Transfer, 2011, 54 (5-6): 1064-1070.
  • 7James E P, Steven K S, Kolb W J, et al. Development of a molten-salt thermocline thermal storage system for parabolic through plants[J].J. Sol.EnergyEng., 2002, 124: 153-159.
  • 8Abedin A H, Rosen M A. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011 (4): 42-46.
  • 9Luzzi A, Lovegrove K, Filippi E, et al. Techno-economic analysis of 10MW solar thermal power plant using ammonia-based thermochemical energy storage[J]. Sol. Energy, 1999, 66(2): 91-101.
  • 10Wentworth W E, Chen E. Simple thermal decomposition reactions for storage of solar thermal energy[J]. Sol. Energy, 1976, 18 (3): 205-214.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部