摘要
钛合金近年来被广泛应用在航空航天、医疗器械和军事工业等领域中,然而钛合金所固有的低导热系数、低弹性模量和高化学反应性使其可加工性能较差。为深入了解拟间歇振动辅助偏摆车削钛合金的切削机理,建立了拟间歇振动辅助偏摆车削和普通切削加工钛合金的三维仿真模型,分析在不同切削速度(30mm/s,40mm/s,50mm/s)下钛合金加工的切削力与切屑形态。从试验结果可以看出:拟间歇振动辅助偏摆车削钛合金的切削力与切屑形成和刀具摆动有关,切削力存在摩擦力逆转和进给力逆转现象,有利于切屑排出,但随着切削速度的增加而逐渐减弱;拟间歇振动辅助偏摆车削钛合金的切屑形态为波浪形,切屑形成复印了刀具摆动的轨迹,切屑的波浪形随着切削速度的增加而逐渐衰退。本研究可以为难加工材料拟间歇振动辅助偏摆车削技术的完善提供理论指导。
Titanium alloys are widely used in aerospace,medical equipment and military industries in recent years.However,their inherent low thermal conductivity,low elastic modulus and high chemical reactivity make their machinability poor.In order to understand the mechanism of quasi-intermittent vibration assisted swing cutting of titanium alloy,a three-dimensional simulation model of quasi-intermittent vibration assisted swing cutting and ordinary cutting is established,the cutting force and chip morphology of titanium alloy at different cutting speeds(30mm/s,40mm/s,50mm/s)are analyzed.The results show that the cutting force and chip formation are related to the tool swing,and the friction force and feed force are reversed in the cutting force,which is beneficial to chip removal,but it decreases with the increase of cutting speed.The chip shape of quasi-intermittent vibration assisted swing cutting titanium alloy is wavy,and the trajectory of tool swing is duplicated by the chip shape,the wave shape of chip decreases with the increase of cutting speed.The research in this paper can provide theoretical guidance for the improvement of the technology of quasi-intermittent vibration assisted swing cutting of difficult-to-machine materials.
作者
卢明明
刁云龙
杜永盛
赵世昕
邸皓晨
Lu Mingming;Diao Yunlong;Du Yongsheng;Zhao Shixin;Di Haochen(Key Laboratory of Micro-nano and Ultra-precision Manufacturing of Jilin Province,School of Mechanical Engineering,Changchun University of Technology)
出处
《工具技术》
北大核心
2023年第8期97-102,共6页
Tool Engineering
基金
国家自然科学基金(51905046)
吉林省微纳与超精密制造重点实验室(20140622008JC)
长春市科技发展重点研发项目(21zgg08)。
关键词
拟间歇振动辅助偏摆车削
钛合金
切削力
切屑形成
三维有限元仿真
quasi-intermittent vibration assisted swing cutting
titanium alloy
cutting force
chip formation
3D finite element simulation