摘要
目的 分析上颌前磨牙区种植单端桥基牙及其周围支持骨组织在静态加载方式下的应力分布状况。方法 采用三维有限元分析方法,研究分别在分散垂直和斜向加载条件下,单端固定桥中基牙种植体及其周围骨组织的应力分布情况。结果 上颌前磨牙区两类骨质中种植单端桥在不同加载方式下,种植体-基台复合体所受应力均集中于对应颈部皮质骨部位的种植体远中部位;周围骨组织中皮质骨应力高于松质骨,均以颈部皮质骨远中部位最大,各向加载时D3模型皮质骨的最大应力值均小于D4模型;与垂直加载比较,颊舌向加载时两类模型最大位移均增大,各向加载时D3模型的种植体-基台复合体最大位移均小于D4模型。结论 从生物力学角度分析上颌前磨牙区种植单端桥的设计具有合理性;高密度松质骨(D3)更有利于上颌前磨牙区种植单端桥的应力分布。
Objective To analyze the stress distribution of the implant abutment and its surrounding supporting bone in the maxillary premolar region under static loading.Methods Three dimensional finite element analysis method was used to study the stress distribution of abutment implant and its surrounding bone tissue in a single ended fixed bridge under distributed vertical loading and oblique loading respectively.Results In the two types of bone in the maxillary premolar region,the stress of the implant-abutment complex was concentrated in the distal part of the implant corresponding to the cortical bone of the neck under different loading models;The stress of cortical bone in the surrounding bone tissue is higher than that of cancellous bone,and the maximum stress value of cortical bone in D3 model is lower than that in D4 model under the condition of isotropic loading;Compared with the vertical loading,the maximum displacement of the two types of models increased under buccal and lingual loading,and the maximum displacement of the implant-abutment complex of D3 model was smaller than that of D4 model under isotropic loading.Conclusion From the biomechanical point of view,the design of implant single-ended bridge in the maxillary premolar region is reasonable;High-density cancellous bone(D3)is more conducive to the stress distribution of implant single-ended bridge in the maxillary premolar region.
作者
乔柱
刘义
邹越
陈菁菁
赵虎
QIAO Zhu;LIU Yi;ZOU Yue;CHEN Jingjing;ZHAO Hu(Department of StomatologyⅡ,Baoding NO.1 Central Hospital,Baoding 071000)
出处
《现代口腔医学杂志》
CAS
2023年第3期172-176,共5页
Journal of Modern Stomatology
基金
保定市科技计划项目(2141ZF245)。
关键词
种植体
单端桥
生物力学
种植支持式
有限元分析
Implant
Cantilever FDP
Biomechanics
Implant-supported
Finite element analysis