摘要
内置式永磁同步电机(IPMSM)由于转子磁路不对称,最大转矩电流比(MTPA)控制可充分利用该特性提高电机带载能力。在实际控制中,IPMSM的电气参数会因磁饱和、温度变化而发生波动,导致实际MTPA控制偏离预定轨迹,无法实现精确控制。针对参数变化,在电动汽车中MTPA控制多采用查表法,但制作查询表格过程复杂且耗时。针对上述问题,文中采用遗忘因子递推最小二乘法对电机参数进行在线辨识,并将得到的实时参数用于MTPA控制,提高了鲁棒性和准确性;运用MTPA控制下定子电流与交、直轴电流的关系得到交、直轴电流给定值,该控制策略原理简单,易于实现。通过Matlab/Simulink搭建控制系统模型进行了仿真研究,其结果验证了所提方法的准确性和有效性。
Due to the asymmetry of rotor magnetic circuit,the maximum torque per ampere(MTPA)control of interior permanent magnet synchronous motor(IPMSM)makes full use of its characteristic to improve the load capacity.In the actual control,the electrical parameters of IPMSM fluctuate due to magnetic saturation and temperature change,resulting in the actual MTPA control deviating from the predetermined track,so the accurate control cannot be realized.In view of the change of parameters,MTPA control in the electric vehicles mostly adopts the look-up table method,but the process of making the table is complex and time-consuming.In order to solve these problems,the forgetting factor recursive least square method is used to identify the motor parameters online,and the real-time parameters obtained are employed in MTPA control,which improves the robustness and accuracy.The given value of d-and q-axes current is obtained by using the relationship between stator current and d-and q-axes current under MTPA control,which is simple in principle and easy to realize.The model of control system is built by Matlab/Simulink,and the simulation results verify the accuracy and effectiveness of the proposed method.
作者
张晓
史军伟
王越
刘业钊
Zhang Xiao;Shi Junwei;Wang Yue;Liu Yezhao(School of Electrical and Power Engineering,China University of Mining and Technology,Xuzhou 221116,Jiangsu,China;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,Jiangsu,China)
出处
《电测与仪表》
北大核心
2023年第10期124-128,共5页
Electrical Measurement & Instrumentation
基金
江苏省重大科技成果转化专项资金项目(BA2016017)。
关键词
内置式永磁同步电机
最大转矩电流比
遗忘因子递推最小二乘法
在线参数辨识
interior permanent magnet synchronous motor
maximum torque per ampere
forgetting factor recursive least square method
online parameter identification