期刊文献+

基于Hill肌肉模型的仿袋鼠腿悬架控制特性研究

Control Characteristics Study of Bionic Kangaroo Leg Suspension Based on Hill Muscle Model
下载PDF
导出
摘要 为进一步改善车辆悬架的控制性能,采用仿生设计思想,提出一种基于Hill肌肉模型的仿袋鼠腿悬架(下称仿生悬架)。设计了该悬架的Fuzzy、Fuzzy-PID控制器,并采用ADAMS和Simulink联合仿真对其控制特性开展研究。研究发现:①冲击路面下,相对于被动悬架,Fuzzy控制和Fuzzy-PID控制下的车身位移和车身加速度分别下降了54%、58%和92%、93%,悬架抗冲击性能明显改善。②随机路面下,随着路面等级和车速的增加,Fuzzy控制和Fuzzy-PID控制均可有效改善悬架的控制性能;相对于被动悬架,主动控制下的悬架表现出更加优异的缓冲隔振性能、路面适应性及稳定性;主动控制下的车身加速度传递率(8.8%~1%)呈下降趋势且数值较小,轮胎动位移(0.19~3.92)mm及其传递率(8.1%~10.5%)呈上升趋势,但数值及变化较小。③冲击路面和随机路面下,相较于Fuzzy控制,Fuzzy-PID控制下的悬架特性更优。上述结果表明,基于Hill肌肉模型的仿生悬架具有良好的控制特性,验证了该仿生思路和控制方法的正确性和有效性。 In order to further improve the control performance of vehicle suspension,a bionic kangaroo leg suspen sion based on Hill muscle model(Hereinafter the bionic suspension)is proposed by adopting the bionic design idea.The Fuzzy and Fuzzy-PID controllers for this suspension are designed,then its control characteristics are studied by ADAMS and Simulink co-simulation.It is found that:under the impact roads,compared with the passive suspension,the vehicle body displacement and acceleration under Fuzzy control and Fuzzy-PID control decrease by 54%,58%and 92%,93%respectively,the impact resistance of the suspension is obviously improved;under random road conditions,with the increase of road surface grade and vehicle speed,both Fuzzy control and Fuzzy-PID control can effectively improve the control performance of suspension;compared with the passive suspension,the suspension under active control shows more excellent cushioning and vibration isolation performance,pavement adaptability and stability;the vehicle body acceleration transmissibility(8.8%~1%)under active control shows a downward trend with a small value,the tire dynamic displacement(0.19~3.92)mm and its transmissibility(8.1%~10.5%)show an upward trend,but the value and the change are small;under the conditions of impact road surface and random road surface,compared with Fuzzy control,Fuzzy-PID control has better suspension characteristics.The above results show that the bionic suspension based on Hill muscle model has good control characteristics,which verifies the correctness and the effectiveness of the bionic thinking and the control method in this paper.
作者 宋勇 刘世静 李占龙 孟杰 张喜清 SONG Yong;LIU Shi-jing;LI Zhan-long;MENG Jie;ZHANG Xi-qing(School of Vehicle and Transportation Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2023年第5期403-409,共7页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金(52272401) 太原科技大学校级创新项目(SY2022047) 忻州市重点研发计划(20220107)。
关键词 悬架 Hill肌肉模型 FUZZY控制 FUZZY-PID控制 仿袋鼠腿 suspension Hill muscle model Fuzzy control Fuzzy-PID control bionic kangaroo leg
  • 相关文献

参考文献6

二级参考文献63

  • 1Wang Z J. Dissecting insect flight. Annual Review of Fluid Mechanics, 2005, 37, 183- 210.
  • 2Birch J M, Dickinson M ft. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. Journal of Experimental Biology, 2003, 206, 2257- 2272.
  • 3Azuma A, Azuma S, Watanabe l, Furuta T. Flight mechanics of a dragonfly.Journal of Experimental Biology 1985, 116. 79- 107.
  • 4Berman G J, Wang Z J. Energy-minimizing kinematics in hovering insect flight. Journal of Fluid Mechanics, 2007. 582,153- 168.
  • 5Dickinson M H, Gotz K G. The wake dynamics and flight forces of the fruit fly Drosophilia melanogaster.Journal of Experimental Biology, 1996, 199, 2085- 2104.
  • 6Dickinson M H, Lchmann F O. Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science. 1999. 284. 1954- 1960.
  • 7Ellington C P. The novel aerodynamics of insect flight: Applications to micro-air vehicles. Journal of Experimental Biology, 1999, 202, 3439- 3448.
  • 8Corm A T, Burgess S C, Hyde R A. Development of a novel flapping mechanism with adjustable wing kinematics tbr micro air vehicles, International Conference on Comparing Design in Nature with Science and Engineering. New Forest, UK, 2006, 24 -26.
  • 9Corm A T, Burgess S C. Hyde R A. Ling C S. From natural flyers to the mechanical realization of a flapping wing micro air vehicle. IEEE lnlernational Conference on Robotics and Biomimetics, Kunming, China, 2006, 17- 20.
  • 10Conn A T, Burgess S C, Chung S L. The parallel crank-rocker flapping mechanism. International Journal of Humanoid Robotics, 2007, 4, 625 643.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部