期刊文献+

An Upwind Mixed Finite Volume Element-fractional Step Method and Convergence Analysis for Three-dimensional Compressible Contamination Treatment from Nuclear Waste

原文传递
导出
摘要 In this paper the authors discuss a numerical simulation problem of three-dimensional compressible contamination treatment from nuclear waste. The mathematical model, a nonlinear convection-diffusion system of four PDEs, determines four major physical unknowns: the pressure, the concentrations of brine and radionuclide, and the temperature. The pressure is solved by a conservative mixed finite volume element method, and the computational accuracy is improved for Darcy velocity. Other unknowns are computed by a composite scheme of upwind approximation and mixed finite volume element. Numerical dispersion and nonphysical oscillation are eliminated, and the convection-dominated diffusion problems are solved well with high order computational accuracy. The mixed finite volume element is conservative locally, and get the objective functions and their adjoint vector functions simultaneously. The conservation nature is an important character in numerical simulation of underground fluid. Fractional step difference is introduced to solve the concentrations of radionuclide factors, and the computational work is shortened significantly by decomposing a three-dimensional problem into three successive one-dimensional problems. By the theory and technique of a priori estimates of differential equations, we derive an optimal order estimates in L2norm. Finally, numerical examples show the effectiveness and practicability for some actual problems.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第4期808-829,共22页 应用数学学报(英文版)
基金 supported by the Natural Science Foundation of Shangdong Province (Grant No.ZR2021MA019) Natural Science Foundation of Hunan Province (Grant No.2018JJ2028)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部