期刊文献+

基于Haar-like T和LBP特征的人脸识别方法 被引量:3

Face Recognition Method Based on Haar-like T and LBP Features
下载PDF
导出
摘要 人脸识别技术是一种可靠的身份识别技术,是当今研究的热点课题之一。该文将Haar-like T和LBP特征相结合的算法进行人脸识别的研究。首先将Haar-like T方法与Haar-like方法进行人脸检测率的对比,再分别用该文算法与CNN、LBP等其他算法相比较。实验结果表明,该算法与基于Haar-Like T特征的人脸识别方法和一些主流方法相比较,增加了改进LBP方法对于图像的处理,使得该方法对光照具有较强的鲁棒性,对光照不敏感,同时对人脸的识别时间更短,在Yale和ORL人脸库中有着较好的识别效果,具备良好的可行性。 Face recognition technology is a reliable identification technology and one of the hot topics in current research.This article combines Haar-like T and LBP features for facial recognition research.Firstly,compare the facial detection rates of Haar-like T method and Haar-like method,and then compare the proposed algorithm with other algorithms such as CNN and LBP.The experimental results show that compared with facial recognition methods based on Haar-like T features and some mainstream methods,this algorithm adds an improved LBP method for image processing,making it highly robust to lighting,insensitive to lighting,and has a shorter recognition time for faces.It has good recognition performance in Yale and ORL facial databases and has good feasibility.
作者 胡宇晨 李秋生 HU Yuchen;LI Qiusheng(Research Center of Intelligent Control Engineering Technology,Gannan Normal University,Ganzhou 341000,China;School of Physics and Electronic Information,Gannan Normal University,Ganzhou 341000,China)
出处 《自动化与仪表》 2023年第10期52-56,61,共6页 Automation & Instrumentation
基金 江西省研究生创新专项资金资助项目(YC2022-s939)。
关键词 人脸识别 卷积神经网络 Haar-like T LBP face recognition convolutional neural network(CNN) Haar-like T LBP
  • 相关文献

参考文献5

二级参考文献71

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2李蕾,周延泉,钟义信.基于语用的自然语言处理研究与应用初探[J].智能系统学报,2006,1(2):1-6. 被引量:5
  • 3Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 4Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 5Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 6Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 7Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.
  • 8Wen-Chung Chang;Chih-Wei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Published by Institute of Electrical and Electronics Engineers,Inc. ,2010,40(3):892- 902.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[A]. In Proceeding of International Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, HI,USA 2001,1:511 - 518.
  • 10Viola P, Jones M. Robust real-time face detection[J].International Journal of Computer Vision, Published by Springer, 2004,57(2) :137 - 154.

共引文献242

同被引文献30

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部