期刊文献+

基于掘进试验和神经网络的渣土改良研究

Research on Soil Conditioning based on Tunneling Test and Neural Network
下载PDF
导出
摘要 文章针对黏质粉土和粉质黏土地层,基于盾构掘进实际控制方法,结合两种主流渣土改良理念,进行现场掘进试验,深入分析不同改良方式对掘进参数和控制的影响,结果表明以3.5%泡沫为主比以水为主的渣土改良方式,推进速度提升约17.8%,开挖效率和适应性等也全面提升。随后通过BP神经网络拟合分析,得到了更加精确的渣土改良方案,使得后续掘进过程中,平均推进速度达到104 mm/min,螺旋输送机压力稳定维持在48 bar~64 bar,出渣效率1~1.1,再未发生过喷涌,穿越各风险源及地表沉降控制理想。 In this paper,aiming at the clayey silt and silty clay stratum,based on the actual control method,combined with the two mainstream soil conditioning concepts,the field tunneling test is carried out,and the influence of different methods on tunneling parameters and control was analyzed in depth.The results show that the promotion speed of 3.5%foam is about 17.8%higher than that of water.The excavation efficiency and adaptability are also comprehensively improved.Subsequently,through the fitting analysis of BP neural network,a more precise soil conditioning scheme was obtained.In the subsequent tunneling process,the average advancing speed reached 104 mm/min,the pressure of the screw conveyor was maintained at 48-64 bar,and the muck discharge efficiency was 1-1.1.No muck-gushing occurred again,and the control of crossing various risk sources and surface subsidence was ideal.
作者 王晓明 左文洲 李长印 王宜中 郭聪 WANG Xiaoming;ZUO Wenzhou;LI Changyin;WANG Yizhong;GUO Cong(Powerchina Railway Construction Investment Group Co.,Ltd.,Beijing 100060,China;Sinohydro Bureau 11 Co.,Ltd.,Zhengzhou 450000,China;School of Civil Engineering,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《粉煤灰综合利用》 CAS 2023年第5期27-32,42,共7页 Fly Ash Comprehensive Utilization
关键词 渣土改良 盾构掘进试验 神经网络 掘进参数 soil conditioning shield tunneling test neural network tunneling parameters
  • 相关文献

参考文献8

二级参考文献101

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部