摘要
This paper mainly clarified the dispersion mechanism of three typical chemical dispersants which are polyethylene glycol octylphenyl ether(Triton X-100,T-100),polyethylene pyrrolidone(PVP)and carboxymethyl cellulose(CMC)within lithium-ion battery(LIB)slurry.Initially,the optimum amounts of T-100,PVP and CMC are selected from 0%,0.5%,1.5%and 2.5%by evaluating the impedance of LIB slurry in the case of adding each typical chemical dispersant with EIS method.Moreover,the impedance spectrum of three different slurry samples which are PVDF-NMP solution,LiCoO_(2) slurry and Carbon Black(CB)slurry with the optimum amount of each dispersant are also investigated.After using SEM and C element distribution images of LIB slurry to verify the correctness of the dispersion mechanism of each dispersant,it is concluded that the dispersion CMC with its optimum amount 1.5%is the best one to promote the formation of conductive paths and CB-coated LiCoO_(2) network structure within LIB slurry,which has the considerably potential to improve the performance of LIB.
基金
support from National Natural Science Foundation of China(grant No.52006176,51876175,and 62101438)
the Key Research and Development Project of Shaanxi Province(grant No.2022kw-18).