期刊文献+

PLVO:基于平面和直线融合的RGB-D视觉里程计 被引量:4

PLVO:Plane-line-based RGB-D Visual Odometry
下载PDF
导出
摘要 针对利用平面特征计算RGB-D相机位姿时的求解退化问题,提出平面和直线融合的RGB-D视觉里程计(Plane-line-based RGB-D visual odometry,PLVO).首先,提出基于平面-直线混合关联图(Plane-line hybrid association graph,PLHAG)的多特征关联方法,充分考虑平面和平面、平面和直线之间的几何关系,对平面和直线两类几何特征进行一体化关联.然后,提出基于平面和直线主辅相济、自适应融合的RGB-D相机位姿估计方法.具体来说,鉴于平面特征通常比直线特征具有更好的准确性和稳定性,通过自适应加权的方法,确保平面特征在位姿计算中的主导作用,而对平面特征无法约束的位姿自由度(Degree of freedom,DoF),使用直线特征进行补充,得到相机的6自由度位姿估计结果,从而实现两类特征的融合,解决了单纯使用平面特征求解位姿时的退化问题.最后,通过公开数据集上的定量实验以及真实室内环境下的机器人实验,验证了所提出方法的有效性. A plane-line-based RGB-D visual odometry(PLVO)is proposed to solve the degenerate problem in the pose estimation of an RGB-D camera using plane features.First,the plane-line hybrid association graph(PLHAG)is proposed to associate two types of geometric features.Planes and lines are associated in an integrated framework,which fully exploits the geometric relationships between two planes and between a plane and a line,respectively.Then,the pose of an RGB-D camera is estimated based on the adaptive fusion of planes and lines.Generally speaking,the plane features are more accurately and stably extracted than the line features.As a result,in our method,the planes dominate the calculation of the camera pose through an adaptive weighting algorithm.As for the degrees of freedom(DoFs)of the pose that cannot be constrained by planes,the line features are supplementarily used to obtain the full 6 DoF pose estimation of the camera.Thus,the fusion of two types of features is achieved and the degenerate problem using only plane features is solved.Various experiments on public benchmarks as well as in realworld environments demonstrate the efficiency of the proposed method.
作者 孙沁璇 苑晶 张雪波 高远兮 SUN Qin-Xuan;YUAN Jing;ZHANG Xue-Bo;GAO Yuan-Xi(College of Artificial Intelligence,Nankai University,Tianjin 300350)
出处 《自动化学报》 EI CAS CSCD 北大核心 2023年第10期2060-2072,共13页 Acta Automatica Sinica
基金 国家自然科学基金(U21A20486,62073178) 天津市杰出青年基金(20JCJQJC00140,19JCJQJC62100) 天津市自然科学基金(20JCYBJC01470,19JCYBJC18500) 山东省自然科学基金重大基础研究项目(ZR2019ZD07)资助。
关键词 RGB-D视觉里程计 平面-直线融合 机器人定位 自适应融合 多特征联合关联 RGB-D visual odometry plane and line fusion robot localization adaptive fusion multi-feature joint association
  • 相关文献

参考文献9

二级参考文献149

  • 1厉茂海,洪炳镕,罗荣华.移动机器人的同时定位和地图创建方法[J].哈尔滨工业大学学报,2004,36(7):874-876. 被引量:4
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 3胡斌,何克忠.计算机视觉在室外移动机器人中的应用[J].自动化学报,2006,32(5):774-784. 被引量:16
  • 4潘良晨,陈卫东.室内移动机器人的视觉定位方法研究[J].机器人,2006,28(5):504-509. 被引量:13
  • 5Ioncl B, loan L, Franti E, Dascalu M, Moldovan C, Goschin S. Systematic odometry errors compensation for mobile robot positioning. In: Proceedings of the 7th International Conference on the Experience of Designing and Application of CAD Systems in Microelectronics. Washington D. C., USA: IEEE, 2003. 574-576.
  • 6Chung H, Ojeda L, Borenstein J. Accurate mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope. IEEE Transactions on Robotics and Automation, 2001, 17(1): 80-84.
  • 7Borenstein J, Feng L Q. Measurement and correction of systematic odometry errors in mobile robot. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869-880.
  • 8Chong K S, Kleeman L. Feature-based mapping in real, large scale environments using an ultrasonic array. The International Journal of Robotics Research, 1999, 18(1): 3-19.
  • 9Kleeman L. Advanced sonar and odometry error modeling for simultaneous localisation and map building. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 699-704.
  • 10Martinelli A. The odometry error of a mobile robot with a synchronous drive system. IEEE Transactions on Robotics and Automation, 2002, 18(3): 399-405.

共引文献144

同被引文献56

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部