期刊文献+

基于BiLSTM-CRF模型的医学影像检查报告信息实体识别 被引量:1

Entity Recognition of Medical Imaging Examination Report Information Based on BiLSTM-CRF Model
下载PDF
导出
摘要 为了将实体识别技术应用于医疗信息系统,提取医学影像检查报告的特征数据,提出了一种基于BiLSTM-CRF模型的信息实体识别方法。构建医学影像检查报告的智能识别系统,实现部位、症状等关键内容的结构化解析,通过可用性评估来分析应用效果。该识别系统已投入使用,共处理了3446份胸部放射CT报告。实验结果表明其识别精度较高,智能提示功能提高了医生的满意度。由此可见命名实体识别方法有助于挖掘医疗文本的价值,在医疗大数据领域有着广阔的应用前景。 In order to apply entity recognition technology to medical information system to extract characteristic data of medical imaging examination report,an information entity recognition method based on BiLSTM-CRF model is proposed to establish an intelligent recognition system for medical imaging examination report,and realize the structural analysis of key contents such as location and symptoms.The application effect is analyzed through usability evaluation.With the application of the recognition system,a total of 3446 chest radiology CT reports are processed.The experimental results show that the recognition accuracy is high,and the intelligent prompt function improves the satisfaction of doctors.Named entity recognition method is helpful to mining the value of medical texts and has a broad application prospect in the field of medical big data.
作者 尤丽珏 尹远芳 YOU Lijue;YIN Yuanfang(Huadong Hospital,Shanghai 200040,China)
机构地区 华东医院
出处 《微型电脑应用》 2023年第10期134-137,共4页 Microcomputer Applications
关键词 BiLSTM-CRF 命名实体识别 医学影像检查报告 医疗大数据 BiLSTM-CRF named entity recognition medical imaging examination report medical big data
  • 相关文献

参考文献13

二级参考文献101

  • 1刘渝琳,陶勇.交易效率、专业化分工与金融业内部收入差距——基于新兴古典经济学的分析框架[J].制度经济学研究,2019(3):20-47. 被引量:2
  • 2孙瑞山,刘晓慧,吴迪.警觉能心理疲劳风险模型[J].中国安全科学学报,2019,29(10):1-5. 被引量:9
  • 3张向喆,王明辉,赵洪波,王起山,潘玉春.生物医学文本中命名实体识别研究[J].上海交通大学学报(农业科学版),2010,28(2):132-139. 被引量:6
  • 4俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 5Doan A,Naughton JF,Ramakrishnan R,et al.Information extraction challenges in managing unstructured data[J].ACM SIGMOD Record,2008,37(4):14-20.
  • 6Vlachos A,Gasperin C.Bootstrapping and evaluating named entity recognition in the biomedical domain[C]//Proceedings of the HLT-NAACL BioNLP Workshop on Linking Natural Language and Biology.New York:Association for Computational Linguistics Morristown,2006:138-145.
  • 7Bundschus M,Dejori M,Stetter M,et al.Extraction of semantic biomedical relations from text using conditional random fields[J].BMC Bioinformatics,2008,9:207.
  • 8Leaman R,Gonzalez GR.BANNER:An executable survey of advances in biomedical named entity recognition[C]//Proceedings of Pacific Symposium on Biocomputing.Hawaii:World Scientific Publishing Co.Pte.Ltd,2008:652-663.
  • 9Leaman R,Miller C,Gonzalez G.Enabling recognition of diseases in biomedical text with machine learning:Corpus and benchmark[C]//Proceedingsof the 3rdInternational Symposium on Lagauges in Biology and Medicine.Seogwipo-si.LBM,2009:82-89.
  • 10Tsai Tzong-ham,Chou Wen-Chi,Wu Shih-Hung,et al.Integrating Linguistic Knowledge into a Conditional Random Field Framework to Identify Biomedical Named Entities[J].Expert Systems with Applications,2006,30(1):117-128.

共引文献78

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部