期刊文献+

磁流变弹性体减震器测试与力学建模

Testing and Mechanical Modeling of Magnetorheological Elastomer Shock Absorber
下载PDF
导出
摘要 磁流变弹性体(magnetorheological elastomers,简称MRE)的力学性能呈现复杂的非线性特性,建立MRE减震器的力学模型以表征其动力学特性是进行智能振动控制应用的关键。针对有参模型参数识别困难、无参模型易陷入局部最优等问题,根据MRE减震器的力学特性试验结果,建立思维进化算法(mind evolution algorithm,简称MEA)优化的BP神经网络模型来描述MRE减震器的力学特性,并对比了参数化建模与非参数化建模的差异性。研究结果表明:线性K‑C模型仅能描述MRE减震器的线性力学特性;Bouc‑Wen模型能较为准确地表征其中心对称非线性力学特性;MEA‑BP神经网络能准确预测MRE减震器的非线性力学特性。研究成果为MRE减震器的设计及应用提供了参考。 The mechanical properties of magnetorheological elastomers(MRE)exhibit complex nonlinear characteristics.The key of intelligent vibration control is to establish the mechanical model of MRE shock absorber to characterize its dynamic characteristics.Aiming at the problems of parameter identification of parametric model and local optimization of nonparametric model,according to the experimental results of mechanical characteristics of MRE shock absorber,a back propagation(BP)neural network model optimized by mind evolution algorithm(MEA)is established to describe the mechanical characteristics of MRE shock absorber,and the differences between parametric modeling and nonparametric modeling are compared.The results show that the linear K-C model can only describe the linear mechanical properties of MRE shock absorber,while the Bouc-Wen model can accurately describe the nonlinear mechanical properties of its central symmetry,MEA-BP neural network can accurately predict the nonlinear mechanical characteristics of MRE shock absorber.The research results provide a reference for the design and application of MRE shock absorber.
作者 刘强 徐凯 占晓明 郑涛 LIU Qiang;XU Kai;ZHAN Xiaoming;ZHENG Tao(Engineering College,Ocean University of China Qingdao,266100,China;Zhejiang Huadong Mapping and Engineering Safety Technology Co.,Ltd.Hangzhou,310014,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2023年第5期995-1000,1043,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51709248) 船舶动力工程技术交通运输行业重点实验室开放基金资助项目(KLMPET2018-06)。
关键词 磁流变弹性体减震器 思维进化算法 BP神经网络 力学建模 magnetorheological elastomer shock absorber mind evolutionary algorithm BP neural network mechanical modelling
  • 相关文献

参考文献9

二级参考文献82

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部