期刊文献+

Intrinsic Kinematics of the Tibiotalar and Subtalar Joints during Human Walking based on Dynamic Biplanar Fluoroscopy

下载PDF
导出
摘要 Accurate knowledge of the kinematics of the in vivo Ankle Joint Complex(AJC)is critical for understanding the biomechanical function of the foot and assessing postoperative rehabilitation of ankle disorders,as well as an essential guide to the design of ankle–foot assistant devices.However,detailed analysis of the continuous 3D motion of the tibiotalar and subtalar joints during normal walking throughout the stance phase is still considered to be lacking.In this study,dynamic radiographs of the hindfoot were acquired from eight subjects during normal walking.Natural motions with six Degrees of Freedom(DOF)and the coupled patterns of the two joints were analyzed.It was found that the movements of the two joints were mostly in opposite directions(including rotation and translation),mainly in the early and late stages.There were significant differences in the Range of Motion(ROM)in Dorsiflexion/Plantarflexion(D/P),Inversion/Eversion(In/Ev),and Anterior–Posterior(AP)and Medial–Lateral(ML)translation of the tibiotalar and subtalar joints(p<0.05).Plantarflexion of the tibiotalar joint was coupled with eversion and posterior translation of the subtalar joint during the impact phase(R^(2)=0.87 and 0.86,respectively),and plantarflexion of the tibiotalar joint was coupled with inversion and anterior translation of the subtalar joint during the push-off phase(R^(2)=0.93 and 0.75,respectively).This coordinated coupled motion of the two joints may be a manifestation of the AJC to move flexibly while bearing weight and still have stability.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2059-2068,共10页 仿生工程学报(英文版)
基金 supported by the National Natural Science Foundation of China(52175270,91848204) the Project of Scientific and Technological Development Plan of Jilin Province(20220508130RC).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部