期刊文献+

基于改进YOLOv3的轻量级目标检测算法 被引量:1

Lightweight Object Detection Algorithm Based on Improved YOLOv3
下载PDF
导出
摘要 针对YOLOv3模型在进行目标检测时无法充分利用丰富的上下文信息导致目标漏检、误检,且模型参数量大的问题,提出一种轻量级目标检测算法。首先,该算法使用VGNetG网络作为骨干网络进行主干替换,这有利于减少模型计算参数量;其次,采用特征尺度感知模块FSSA进一步融合主干信息特征,使模型上下文信息对齐上采样的高级特征信息;最后,改进的交叉注意力模块ICC-Attention使用两个连接图来代替常见的单个密集连接图,并通过交叉路径法有效提取所有像素的上下文信息。改进后的算法比YOLOv3模型缩减一倍模型参数量,提高了算法参数效率与检测速率。算法在PASCAL VOC2007测试集上验证,实验结果表明,平均检测精度达到84.1%,参数量为5.37 M,检测速度为47帧/s,改进后的算法可有效改善YOLOv3模型中的漏检、误检与参数量大的问题,同时在检测速度方面可以满足实时性的要求。 Aiming at the problems of miss detection and false detection when the YOLOv3 algorithm performed detection,a lightweight object detection algorithm was proposed to deal with the problems which caused by the inadequate utilization of rich context information with a large number of model parameters.First,the VGNetG network was employed as the backbone network for replacement,which helped to reduce the number of model computational parameters;second,Feature Select Scale Aware(FSSA)module was adopted to further fuse the information features of the backbone to align the model contextual information to the high-level features of the upsampling;finally,the Improved Criss Cross Attention(ICC-Attention)utilized two connected graphs to efficiently extract the contextual information of all pixels by the cross path method instead of the common single dense connected graph.The improved algorithm exponentially reduced the number of model parameters and increased the efficiency of algorithm parameters and detection rate.The algorithm was validated on the PASCAL VOC2007 test set,and the experimental results showed that the average detection accuracy reached 84.1%,the number of parameters was 5.37 M,and the detection speed was 47 FPS.The improved algorithm effectively improved the problems of missed detection,false detection and a large number of parameters of the YOLOv3 algorithm.At the same time,the algorithm could meet the requirements of real-time in terms of detection speed.
作者 王燕妮 贾瑞英 WANG Yanni;JIA Ruiying(School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)
出处 《探测与控制学报》 CSCD 北大核心 2023年第5期98-105,共8页 Journal of Detection & Control
关键词 目标检测 轻量级 尺度感知 上下文信息 object detection lightweight scale awareness contextual information
  • 相关文献

参考文献10

二级参考文献253

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:333
  • 2余天洪,王荣本,顾柏园,郭烈.基于机器视觉的智能车辆前方道路边界及车道标识识别方法综述[J].公路交通科技,2006,23(1):139-142. 被引量:22
  • 3王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 4Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 5Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 6Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 7Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 8Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 9Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 10Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.

共引文献830

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部