摘要
Rock slopes are usually reinforced by a number of rock bolts due to the high efficiency and low price.However,where should the rock bolts be installed is still a troublesome issue.For anti-dip bedding rock slopes(ABRSs),the installation position of rock bolts is a controlling factor that determines the reinforcement effect.In this work,a theoretical method is firstly proposed for assessing the stability of ABRSs reinforced by rock bolts using a limit equilibrium model.A comparison of theoretical calculations and numerical results was conducted to test the correctness of the theoretical method.Based on the stability assessment of ABRSs,we introduce adaptive moment estimation method(Adam)to optimize the installation location of rock bolts.Using Adam optimizer,the optimal layout of rock bolts with the maximum factor of safety can be determined,and the factor of safety of the slope increases by about 25%using the same amount of rock bolts but with different installation locations.The proposed method enables the fast stability analysis and supporting design for reinforced ABRSs,which paves the way to smart supporting design of slopes.
基金
supported by National Natural Science Foundation of China(Grant No.12072358)
Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2022333)
Key Laboratory of Roads and Railway Safety Control(Shijiazhuang Tiedao University),the Ministry of Education(Grant No.STDTKF202103).