期刊文献+

Knowledge Graph based Mutual Attention for Machine Reading Comprehension over Anti-Terrorism Corpus 被引量:1

原文传递
导出
摘要 Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreover,current research lacks the ability to embed accurate background knowledge and provide precise answers.To address these two problems,this paper first builds a text corpus and testbed that focuses on the anti-terrorism domain in a semi-automatic manner.Then,it proposes a knowledge-based machine reading comprehension model that fuses domain-related triples from a large-scale encyclopedic knowledge base to enhance the semantics of the text.To eliminate knowledge noise that could lead to semantic deviation,this paper uses a mixed mutual ttention mechanism among questions,passages,and knowledge triples to select the most relevant triples before embedding their semantics into the sentences.Experiment results indicate that the proposed approach can achieve a 70.70%EM value and an 87.91%F1 score,with a 4.23%and 3.35%improvement over existing methods,respectively.
出处 《Data Intelligence》 EI 2023年第3期685-706,共22页 数据智能(英文)
基金 National key research and development program(2020AAA0108500) National Natural Science Foundation of China Project(No.U1836118) Key Laboratory of Rich Media Digital Publishing,Content Organization and Knowledge Service(No.:ZD2022-10/05).
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部