期刊文献+

基于椭圆曲线的高效无证书环签名方案

Efficient certificateless ring signature scheme based on elliptic curve
下载PDF
导出
摘要 环签名具有自发性和匿名性,被广泛用于解决用户身份和数据隐私泄露问题;而无证书公钥密码体制不仅可以解决密钥托管问题,还不需要公钥证书的管理;无证书环签名则结合了上述两者的优点,具有广泛的研究意义,但现有大多数无证书环签名方案基于双线性配对运算和模指数运算,计算成本高、效率低。为了提高签名阶段和验证阶段的效率,提出一种新的基于椭圆曲线的高效无证书环签名(ECL-RS)方案,使用了计算代价低、安全性高、灵活性好的椭圆曲线。该方案的安全性规约为离散对数困难问题和Diffie-Hellman问题,且在随机预言机模型(ROM)下证明了它能够抵抗公钥替换攻击和恶意密钥生成中心攻击,具有不可伪造性和匿名性。性能分析表明,ECL-RS方案只需(n+2)(n表示为环成员个数)次椭圆曲线标量乘法和标量加法运算,以及(n+3)次单向哈希运算,在保证安全的情况下具有较低的计算代价和更高的效率。 Ring signature is widely used to solve the problems of user identity and data privacy disclosure because of its spontaneity and anonymity;and certificateless public key cryptosystem can not only solve the problem of key escrow,but also do not need the management of public key certificates;certificateless ring signature combines the advantages of both of the above mentioned,and has extensive research significance,but most of the existing certificateless ring signature schemes are based on the calculation of bilinear pairings and modular exponentiation,which are computationally expensive and inefficient.In order to improve the efficiency of signature and verification stages,a new Efficient CertificateLess Ring Signature(ECL-RS)scheme was proposed,which used elliptic curve with low computational cost,high security and good flexibility.The security statute of ECL-RS scheme stems from a discrete logarithm problem and a Diffie-Hellman problem,and the scheme is proved to be resistant to public key substitution attacks and malicious key generation center attacks under Random Oracle Model(ROM)with unforgeability and anonymity.Performance analysis shows that ECL-RS scheme only needs(n+2)(n is the number of ring members)elliptic curve scalar multiplication and scalar addition operations as well as(n+3)one-way hash operations,which has lower computational cost and higher efficiency while ensuring security.
作者 朱秀萍 刘亚丽 林昌露 李涛 董永权 ZHU Xiuping;LIU Yali;LIN Changlu;LI Tao;DONG Yongquan(College of Computer Science and Technology,Jiangsu Normal University,Xuzhou Jiangsu 221116,China;Fujian Provincial Key Laboratory of Network Security and Cryptology(Fujian Normal University),Fuzhou Fujian 350117,China;Guangxi Key Laboratory of Cryptography and Information Security(Guilin University of Electronic Technology),Guilin Guangxi 541004,China)
出处 《计算机应用》 CSCD 北大核心 2023年第11期3368-3374,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61702237) 徐州市科技计划项目(KC22052) 福建省网络安全与密码技术重点实验室(福建师范大学)开放课题(NSCL-KF2021-04) 广西密码学与信息安全重点实验室(桂林电子科技大学)研究课题(GCIS202114) 江苏师范大学研究生科研与实践创新计划项目(2021XKT1396) 教育部产学合作协同育人项目(202101374001)。
关键词 环签名 椭圆曲线 无证书环签名 高效性 随机预言机模型 ring signature elliptic curve certificateless ring signature efficiency Random Oracle Model(ROM)
  • 相关文献

参考文献3

二级参考文献23

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部