摘要
现有的图像分割方法用于清晰度较好的煤矿井下图像时效果良好,但应用于环境复杂的煤矿井下时,获取的图像大多较模糊且目标物体轮廓不清晰,从而影响目标物体的分割精度。针对上述问题,提出了一种基于改进SOLOv2的煤矿图像实例分割方法。将SOLOv2模型的ResNet-50网络替换为ResNeXt-18网络,从而精简网络层数,提升模型的推理速度;引入坐标注意力(CA)模块,以提升模型特征提取能力,保留精确的位置信息,提高模型的图像分割精度;采用ACON-C激活函数替换ReLU激活函数,从而使神经元之间的特征得以充分组合,增强模型的特征表达能力,进一步提高模型的图像分割精度。将改进SOLOv2模型部署在嵌入式平台上进行煤矿图像分割实验,相较于SOLOv2模型,改进SOLOv2模型的Mask AP(掩膜平均精度)提高了1.1%,模型权重文件减小了83.2 MiB,推理速度提高了5.30帧/s,达26.10帧/s,在煤矿图像分割精度和推理速度上均有一定提升。
The existing image segmentation methods have good results when used for coal mine underground images with good clarity.But when the methods are applied to coal mine underground images with complex environments,the obtained images are mostly blurry and the contour of the target object is not clear.The result affects the segmentation precision of the target object.In order to solve the above problems,a coal mine image instance segmentation method based on improved SOLOv2 is proposed.The method replaces the ResNet-50 network of the SOLOv2 model with the ResNeXt-18 network to simplify the network layers and improve the inference speed of the model.The method introduces the coordinate attention(CA)module to enhance the model's feature extraction capability,retain precise positional information,and improve the model's image segmentation precision.The method replaces the ReLU activation function with the ACON-C activation function.The features between neurons can be fully combined,enhancing the model's feature expression capability,and further improving the image segmentation precision of the model.The improved SOLOv2 model is deployed on an embedded platform for coal mine image segmentation experiments.Compared to the SOLOv2 model,the Mask AP(mask average precision)of the improved SOLOv2 model increases by 1.1%,the weight file of the model decreases by 83.2 MiB.The inference speed increases by 5.30 frames/s,reaching 26.10 frames/s.Both the precision and inference speed of coal mine image segmentation are improved to a certain extent.
作者
季亮
JI Liang(CCTEG Changzhou Research Institute,Changzhou 213015,China;Tiandi(Changzhou)Automation Co.,Ltd.,Changzhou 213015,China)
出处
《工矿自动化》
CSCD
北大核心
2023年第11期115-120,共6页
Journal Of Mine Automation
基金
江苏省科技成果转化专项项目(BA2022040)
天地(常州)自动化股份有限公司科研项目(2022FY0007)。