摘要
Recently,partially degenerate triple-photon states(TPS)generated by the third-order spontaneous parametric down-conversion have been observed in a superconducting cavity(2020,Phys.Rev.X 10,011011).Their non-Gaussian entanglement properties,characterized by a series of high-order covariance matrices,have also been theoretically revealed.Here,we use the non-Gaussian entanglement criterion proposed in(2021,Phy.Rev.Lett.127,150502)and the logarithmic negativity to study the effect of pump brightness,self-Kerr and cross-Kerr interactions on the entanglement of partially degenerate TPS(PDTPS).We find that the brighter the pump,the easier the entanglement of PDTPS leap to higher-order covariance matrices.Although both self-Kerr and cross-Kerr interactions induce nonlinear phase shifts and weaken the entanglement of PDTPS,cross-Kerr interactions can effectively raise the threshold of entanglement loaded on the third-order covariance matrix.These results can contribute to our understanding of the mechanism of the generation of unconditional non-Gaussian entanglement.
基金
the National Natural Science Foundation of China(12204293)
Applied Basic Research Program in Shanxi Province(No.202203021212387)。