期刊文献+

多主体分布式综合能源系统两级协调优化调度方法

Bi-level coordination and optimal scheduling method for multi-body distributed integrated energy systems
下载PDF
导出
摘要 【目的】分布式综合能源系统(distributed integrated energy system, DIES)的建设能够有效提高能源利用效率,对促进能源可持续发展具有重要意义。【方法】提出一种分布式协调两级优化框架来解决DIES最佳运行决策和能源调度。首先,建立了含多个主体的DIES架构,并提出了分布式两级优化策略;其次将多主体DIES优化问题分解为上下两层,每层被视为具有单独目标函数的独立系统,能源能够在多个地区之间直接交易;然后采用基于教学优化(teaching-learning-based optimization, TLBO)算法解决多层次优化问题,使得每个独立主体根据其自身的利润优化其能源调度。【结果】结果显示:在所提出的分布式两级优化框架下,考虑不同主体间的能源交易,使主体1、2和3的运行成本分别降低了约7.00%、11.63%和8.65%,主体1、2和3的天然气购买量分别降低了约8.36%、3.03%和8.47%,各主体的总碳排放成本降低了约15.73%。【结论】结果表明:通过不同主体间的能源交互方式,使得互联主体从当地能源贸易中获益,总运行成本降低了约12.07%、碳排放总成本降低了约15.73%,促进了系统运行的经济性,而且对于各主体系统运行的灵活性和低碳性都是有益的。 [Objective]The construction of distributed integrated energy systems(DIES)can effectively improve energy utilization efficiency and is of great significance in promoting sustainable energy development.[Methods]A distributed two-level optimization framework is proposed to solve the optimal operation decision and energy dispatch of DIES.Firstly,a DIES architecture with multiple entities is established,and a distributed two-level optimization strategy is proposed.Secondly,the multi-entity DIES optimization problem is decomposed into upper and lower levels,each of which is treated as an independent system with a separate objective function,and energy can be directly traded between multiple regions.Then,the teaching-learning-based optimization(TLBO)algorithm is used to solve the multi-level optimization problem,so that each independent entity optimizes its energy dispatch according to its own profit.[Results]The result show that under the proposed distributed two-level optimization framework,considering the energy transactions between different entities,the operating costs of entities 1,2,and 3 are reduced by about 7.00%,11.63%,and 8.65%,respectively,the natural gas purchase volumes of entities 1,2,and 3 are reduced by about 8.36%,3.03%,and 8.47%,respectively,and the total carbon emission costs of each entity are reduced by about 15.73%.[Conclusion]The result indicate that through energy exchange between different entities,mutual benefits can be gained from local energy trading.The total operating costs decreased by approximately 12.07%and the total carbon emissions costs decreased by approximately 15.73%,promoting the economic efficiency of system operation.Moreover,it is beneficial for the flexibility and low-carbon operation of each entity′s system.
作者 涂强 范宏 王宏祥 TU Qiang;FAN Hong;WANG Hongxiang(School of Electric Power Engineering,Shanghai University of Electric Power,Shanghai 200090,China;State Grid Shandong Electric Power Company Jining Power Supply Company,Jining 272113,Shandong,China)
出处 《水利水电技术(中英文)》 北大核心 2023年第11期29-39,共11页 Water Resources and Hydropower Engineering
基金 国家重点研发计划资助项目(2022YFA1004600)。
关键词 分布式综合能源系统 分布式两级优化策略 多主体 能源交易 基于教学优化算法 distributed integrated energy systems distributed two-level optimization strategies multi-entity regional subjects energy trading teaching-learning-based optimization algorithm
  • 相关文献

参考文献15

二级参考文献193

共引文献360

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部