期刊文献+

二维耗散准地转方程在Lorentz空间的正则性准则

Regularity criteria in Lorentz spaces for the two dimensional quasi-geostrophic equation with dissipation
下载PDF
导出
摘要 考虑二维耗散准地转方程解的正则性.通过在Lorentz空间上推广一个改进的Gronwall型引理,同时借助于Lorentz空间的插值,并结合二维耗散准地转方程解的能量估计,得到了其在时空型Lorentz空间的新爆破准则,精炼了之前的相关结果. In this paper,the regularity of solutions to the two dimensional quasi-geostrophic equation with dissipation is studied.By generalizing an improved Gronwall-type lemma in Lorentz spaces,combining interpolation of Lorentz spaces with energy estimates,we derive some new regularity criteria for the aforementioned equation,which allow both the space-time directions of the temperature gradient to be in Lorentz spaces.This refines the previous corresponding results.
作者 魏巍 王艳青 WEI Wei;WANG Yanqing(School of Mathematics,Northwest University,Xi′an 710127,China;College of Mathematics and Information Science,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处 《纯粹数学与应用数学》 2023年第4期542-553,共12页 Pure and Applied Mathematics
基金 国家自然科学基金(11601423,12271433)。
关键词 准地转方程 正则性 LORENTZ空间 quasi-geostrophic equation regularity Lorentz spaces
  • 相关文献

参考文献2

二级参考文献37

  • 1Chae, D. On the regularity conditions for the dissipative quasi-geostrophic equations. SIAM J. Math. Anal., 37:1649-1656 (2006).
  • 2Chae, D., Lee, J. Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Com- mun. Math. Phys., 233:297-311 (2003).
  • 3Chen, Q., Miao, C., Zhang, Z. A new Bernstein's in equality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys., 271:821-838 (2007).
  • 4Chen, Q., Zhen, Z. Global well-posedness of the 2D critical dissipative quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinear Anal., 67:1715-1725 (2007).
  • 5Constantin, P., Majda, A.J., Tabak, E. Formation of strongfronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity, 7:1495-1533 (1994).
  • 6Constantain, P., Cordoba, D., Wu, J. On the critical dissipative quasi-geostrophic equations. Indiana Univ. Math. J., 50:97-107 (2001).
  • 7Constantin, P., Wu, J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal., 30: 737-948 (1999).
  • 8Cordoba, A., Cordoba, D. A mximum principle applied to quasi-geostrophic equations. Commun. Math. Phys., 249:511-528 (2004).
  • 9Dong, B., Chen, Z. A remark on regularity criterion for the dissipative quasi-geostrophic equations. J. Math. Anal Appl., 329:1212-1217 (2007).
  • 10Dong, H., Du, D. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete Contin. Dyn. Syst., 21:1095-1101 (2008).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部