期刊文献+

基于Gabor滤波和显著性检测的红外与可见光图像融合 被引量:1

Infrared and Visible Image Fusion Using Gabor Filtering and Saliency
下载PDF
导出
摘要 红外和可见光图像的融合既要突出红外图像中重要的亮度特征,又要使融合图像保留清晰的视觉效果。因此,提出了基于Gabor滤波和显著性检测的融合方法。首先,采用显著性检测得到红外和可见光图像的显著层,再使用Frankle-McCann Retinex增强算法对可见光图像进行增强,之后用Gabor滤波器将红外图像和增强后的可见光图像分解为细节层和基础层。然后,采用“最大绝对”的融合策略对显著层与细节层进行融合,最后进行图像重构。实验结果表明,得到的结果与其他八种经典算法比较中表现优异,尤其是AG、EI、IE、SF等指标方面尤为突出。 The fusion of infrared and visible images should highlight the important luminance features in the infrared images,but also make the fused images retain clear visual effects.Therefore,a fusion method based on Gabor filtering and saliency detection is proposed.First,saliency detection is used to obtain the salient layers of the IR and visible images.Then the visible image is enhanced using the Frankle-McCann Retinex enhancement algorithm.After that,the infrared image and the enhanced visible image are decomposed into detail layer and base layer using Gabor filter.Then,a"maximum absolute"fu-sion strategy is used to fuse the significant layer with the detail layer,and finally,the image is reconstructed.The experi-mental results show that the obtained results are superior in comparison with other eight classical algorithms,especially in terms of AG,EI,IE,SF and other indexes.
作者 钟荣军 付芸 ZHONG Rongjun;FU Yun(School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2023年第6期26-33,共8页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金项目(61975021) 吉林省重点科技计划项目(20170204015GX,20180201049YY)。
关键词 图像融合 GABOR滤波 显著性检测 Frankle-McCann Retinex增强 image fusion Gabor filtering saliency detection Frankle-McCann Retinex enhancement
  • 相关文献

参考文献10

二级参考文献52

  • 1陈艳菲,桑农,王洪伟,但志平.基于视觉注意的可见光与红外图像融合算法[J].华中科技大学学报(自然科学版),2013,41(S1):112-115. 被引量:5
  • 2林晓春,李存志.一种基于图像融合的红外图像增强新方法[J].西安电子科技大学学报,2005,32(2):189-192. 被引量:11
  • 3STATHAKI T. Image fusion: Algorithms and applica- tions [M]. New York: Academic Press, 2008.
  • 4ROCKINGER O, FECHNER T. Pixel-level image fusion: The case of image sequences [J]. Proceedings of SPIE, 1998, 3374: 378-388.
  • 5BURT P J, ADELSON E H. Merging images through pattern decomposition [J]. Proceedings of SPIE, 1985, 575: 173-181.
  • 6TOET A, VAN RUYVEN L J, VALETON J M. Merging thermal and visual images by a contrast pyramid [J]. Optical Engineering, 1989, 28(7): 789-792.
  • 7BURT P J, KOLCZYNSKI R J. Enhanced image capture through fusion [C]// Proceedings of the 4th Interna- tional Conference on Computer Vision. Berlin: IEEE, 1993: 173-182.
  • 8HILL P R, BULL D R, CANAGARAJAH C N. Image fusion using a new framework for complex wavelet transforms [C]/ / Proceedings of the IEEE International Conference on Image Processing. Genoa: IEEE, 2005: 1338-1341.
  • 9LI S T, WANG Y N. Landsat TM and SAR image fusion by multi-wavelet transform [J]. Proceedings of SPIE. 2001, 4548: 146-150.
  • 10SIMONCELLI E P, FREEMAN W T. The steerable pyra- mid: A flexible architecture for multi-scale derivative computation [C]/ / Proceedings of International Con- ference on Image Processing. Washington DC: IEEE, 1995: 444-447.

共引文献45

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部