摘要
利用炉中高温拉伸设备对板厚为5 mm的GH4169镍基合金在7种测试温度(450~1050℃),应变速率分别为0.01和0.001 s-1时进行高温拉伸实验,获得材料在不同温度下的伸长率、屈服强度和抗拉强度,并对其高温拉伸变形行为进行分析,为该合金板材的高温拉伸成形制备和服役性能评估提供数据支持。结果表明,应变速率为0.001 s^(-1),温度高于850℃时,GH4169镍基合金板材的伸长率随着温度的升高持续增大,在1050℃时,伸长率最高可达112%,抗拉强度随着温度的升高持续减小,强度减小至66 MPa,仅为室温下的7.1%。应变速率为0.01 s^(-1)时,GH4169镍基合金板材的伸长率和抗拉强度变化具有相似的规律。温度低于800℃时,伸长率和抗拉强度随温度变化不大,保持了较高的强度;而随温度升高至850℃时,材料产生了明显软化现象,应变硬化指数(n)值随着温度的升高而减小,塑性变形量明显增大。
GH4169 nickel-based alloy material with a plate thickness of 5 mm was subjected to high-temperature tensile experiments at seven test temperatures(450~1050℃)and strain rates of 0.01 and 0.001 s^(-1),respectively,using high-temperature tensile equipment in a furnace.The elongation,yield strength and tensile strength of the material at different temperatures were obtained,and the high-temperature tensile deformation behavior was analysed,which provided data support for the preparation of high-temperature tensile forming and service performance evaluation of the alloy sheet.The results show that when the strain rate is 0.001 s^(-1)and the temperature is higher than 850℃,the elongation of the GH4169 nickel-based alloy plate continues to increase with increasing temperature and reaches up to 112%at 1050℃.The tensile strength decreases to 66 MPa with increasing temperature,which is only 7.1%at room temperature.When the strain rate is 0.01 s^(-1),the elongation and tensile strength changes of the GH4169 nickel-based alloy sheet have similar trends.When the temperature is lower than 800℃,the elongation and tensile strength do not change much with temperature,and a high strength is maintained.However,when the temperature increases to 850℃,the material has an obvious softening phenomenon,the strain hardening index n value decreases with increasing temperature,and the plastic deformation increases significantly.
作者
王梦真
林健
呼啸
王大刚
卫强
WANG Mengzhen;LIN Jian;HU Xiao;WANG Dagang;WEI Qiang(Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China;Capital Aerospace Machinery Corporation Limited,Beijing 100076,China;Beijing Aerospace Systems Engineering Institute,Beijing 100076,China)
出处
《铸造技术》
CAS
2023年第12期1109-1115,共7页
Foundry Technology
基金
北京市自然科学基金-海淀原始创新联合基金(L212022)
国家自然科学基金(51005004)。