期刊文献+

基于OODA环的作战体系网络重要节点识别方法

The Important Nodes Identificationin of Combat SystemNetwork Based on OODA Ring
下载PDF
导出
摘要 针对目前作战体系网络各类节点功能各异,交互关系错综复杂导致网络中重要节点难以准确识别的问题,引入OODA环分析思想对其进行求解。基于复杂网络建模思想构建作战体系网络模型,并给出OODA作战环的定义和基本类型;根据子图同构匹配思想,提出基于VF3算法的OODA作战环搜索方法,并在此基础上,以OODA作战环综合作战能力影响为入手点,利用网络级联失效方法实现节点的全面评估。在仿真实验中与现有方法进行对比,结果表明该方法识别结果更准确,验证了该方法的有效性和合理性。 To solve the problems of various functions of various nodes in the current combat system network and the difficulty in accurate identification of important nodes in the network,the idea of OODA ring analysis was introduced in this paper.The combat system network model was constructed based on the idea of complex network modeling,and the definition and basic mode of OODA combat ring were given.According to the subgraph isomorphism matching idea,the OODA combat ring search method based on VF 3 algorithm was proposed.With the comprehensive combat capability influence of OODA combat ring as the starting point,the evaluation of nodes was realized by using the network cascade failure method.In the simulation experiment,compared with the node strength and loop medium number method,the results showed that the proposed method was more accurate,which verified the effectiveness and rationality of the proposed method.
作者 杨倩 方艳红 锁斌 YANG Qian;FANG Yanhong;SUO Bin(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China)
出处 《探测与控制学报》 CSCD 北大核心 2023年第6期116-122,共7页 Journal of Detection & Control
基金 国家自然科学基金项目(U1830133) 复杂系统控制与智能协同技术国防科技重点实验室开放研究基金项目(FZJ1830133)。
关键词 作战体系网络 重要节点 OODA环 子图同构匹配 网络级联失效 combat system network important node OODA ring subgraph isomorphic matching network cascade failure
分类号 E917 [军事]
  • 相关文献

参考文献10

二级参考文献91

  • 1张昱,张明智,杨镜宇,赵晔,荣明.一种基于OODA环的武器装备体系建模方法[J].系统仿真学报,2013,25(S1):6-11. 被引量:35
  • 2李德毅,王新政,胡钢锋.网络化战争与复杂网络[J].中国军事科学,2006,19(3):111-119. 被引量:58
  • 3谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006,26(11):79-83. 被引量:257
  • 4Corley H W, Sha D Y. Most vital links and nodes in weighted networks [J]. Oper Res Lett, 1982, 1:157 - 160.
  • 5Nardelli E, Proietti G, Widmayer P. Finding the most vital node of a shortest path [J]. Theoretical Computer Science, 2001, 296(1): 167- 177.
  • 6Erdos P, Renyi A. On random graphs [J]. Publ Math, 1959, 6:290 - 297.
  • 7Watts D J, Strogatz S H. Collective dynamics of‘small-world' networks [J]. Nature, 1998, 393:440- 442.
  • 8Barabasi A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286:509 - 512.
  • 9Callaway D S, Newman M E J, Strogatez S H, et al. Network robustness and fragility: Percolation on random graphs [ J]. Phys Rev Lett, 2000, 85(25): 5468- 5471.
  • 10Albert R, Jeong H, Barabasi A-L. Error and attack tolerance of complex networks [J]. Nature, 2000, 406:378 -382.

共引文献325

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部