期刊文献+

A dynamic-mode-decomposition-based acceleration method for unsteady adjoint equations at low Reynolds numbers

下载PDF
导出
摘要 The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-tion(DMD).The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system.Thereafter,DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching.First-order zero frequency mode is selected to accelerate the pseudo-time marching of unsteady adjoint equations in every real-time step.Through flow past a stationary circular cylinder and an unsteady aerodynamic shape optimization example,the efficiency of solving unsteady adjoint equations is significantly improved.Re-sults show that one hundred adjoint vectors contains enough information about the pseudo-time dynamics,and the adjoint dominant mode can be precisely predicted only by five snapshots produced from the adjoint vectors,which indicates DMD analysis for pseudo-time marching of unsteady adjoint equations is efficient.
出处 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期353-356,共4页 力学快报(英文版)
基金 the Natural Science Foundation of Jiangsu Province(Grants No.BK20230202) Basic Science(Natural Science)Re-search Project of Colleges and Universities in Jiangsu Province(Grant No.22KJB130005) Changzhou Science and Technology Project(Grant No.CJ20220242)for financial support Jiaqing Kou would like to thank the support of the Alexander von Humboldt Foundation(Ref 3.5-CHN-1227287-HFST-P) Wenkai Yang would like to thank the support of the National Natural Science Foundation of China(Grant No.52205335) supported by Changzhou Sci&Tech Pro-gram(Grant No.CM20223013).
  • 相关文献

参考文献2

二级参考文献20

  • 1M.H. Dickinson, F.O. Lehmann, S.P. Sane, Wing rotation and the aerodynamic basis of insect flight, Science 284 (1999) 1954-1960.
  • 2J. Valasek, Morphing Aerospace Vehicles and Structures, John Wiley & Sons, Chichestel, 2012.
  • 3H. Wang, L Zeng, H. Liu, C. Yin, Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies, J. Exp. Biol, 206 (2003) 745-757.
  • 4W. Shyy, Y. Lian, J. Tang, D. Viieru, H. Liu, Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, New York, 2008.
  • 5M. Sun, J. Tang, Unsteady aerodynamic force generation by a model h'uit fly wing in flapping motion, J. Exp. Biol. 205 (2002) 55-70.
  • 6M, Vanella, T. Fitzgerald, S. Preidikman, E. Balaras, B. Balachandran, Influence of flexibility on the aerodynamic performance of a hovering wing, J. Exp. Biol. 212 (2009) 95-105.
  • 7H, Wan, H. Dong, G,P. Huang, Hovering hinge-connected flapping plate with passive deflection, AIAA J. 50 (2012) 2020-2027.
  • 8C. Li, H. Dong, Y. Ren, A numerical study of flapping plates hinged with a trailing-edge flap, AIAA Paper 2014-2049 (2014).
  • 9A. Jameson, Aerodynamic shape optimization using the adjoint method. Lectures at the Yon Karman Institute, Brussels, Fehuaw 6 (2003).
  • 10T.R. Bewley, P. Moin, R. Temam, DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech. 447 (2001) 179-225.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部