期刊文献+

基于畅销书及意见领袖的图书推荐系统

BOOK RECOMMENDATION SYSTEM BASED ON OPINIONLEADERS AND POPULAR BOOKS
下载PDF
导出
摘要 在读者向图书馆借阅图书或从书店购买图书的过程中,名人推荐及畅销书榜单对读者的选择具有很大的影响。针对这种情况,结合影响力分析和主题模型提出新的图书协同过滤推荐系统。算法结合最大熵和最大方差来选择评分矩阵的影响力用户和影响力项目,基于建立的密集矩阵预测未知评分。运用改进的聚类算法对词向量进行聚类处理,建立主题。在公开的数据集上完成验证实验,结果表明该算法提高了图书推荐系统的性能。 When readers borrow books from libraries or purchase books from shops,both celebrity recommended books and best seller list have a big influence to the selection of readers.In view of this,we propose a new book collaborative filtering recommendation system,which combines influence analysis and topic model.This algorithm combined maximum entropy and maximum variance to select the influential users and influential items in the rating matrix,and it predicted the unknown ratings based on the dense matrix.The algorithm applied enhanced clustering algorithm to cluster the word vectors,as a result,the topics of texts were constructed.Validation experiments were carried on public datasets.The results show that the proposed algorithm improves the performance of book recommendation system.
作者 成胤钟 Cheng Yinzhong(Chongqing Vocational College of Culture and Arts,Chongqing 400067,China)
出处 《计算机应用与软件》 北大核心 2024年第1期64-70,104,共8页 Computer Applications and Software
关键词 图书推荐系统 主题模型 球面k均值聚类 最大熵 协同过滤 意见领袖 Book recommendation system Topic model Spherical k-means clustering Maximum entropy Collaborative filtering Opinion leader
  • 相关文献

参考文献8

二级参考文献66

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Candillier L,Meyer F,Fessant F.Designing specific weighted similarity measures to improve collaborative filtering systems[C]//Proc of the Industrial Conference on Data Mining,2008,50(77):242-255.
  • 3Bell R,Koren Y,Volinsky C.Modeling relationships at multiple scales to improve accuracy of large recommender systems[C]//Proc of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2007:95-104.
  • 4Kim D,Yum B J.Collaborative filtering based on iterative principal component analysis[J].Expert Systems with Applications,2005,28(4):823-830.
  • 5George T,Merugu S.A scalable collaborative filtering framework based on co-clustering[C]//5th IEEE International Conference on Data Mining.Texas,USA:IEEE,2005,4:10-17.
  • 6Chen Zhimin,Jiang Yi,Zhao Yao.A collaborative filtering recommendation algorithm based on user interest change and trust evaluation[J].International Journal of Digital Content Technology and Its Applications,2010,4(9):106-113.
  • 7Michael J,Andreas T,Robert L.Combining predictions for accurate recommender systems[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2010:693-702.
  • 8Zhou T,Ren J,Medo M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,2007,76(4).
  • 9郝小花,邓小昭.基于数据挖掘的可视化数字图书馆用户社区聚类与特征分析[J].情报科学,2008,26(3):396-399. 被引量:10
  • 10刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部