期刊文献+

考虑空间分布的电动出租车中长期充电需求预测

Medium and Long Term Charging Demand Forecasting of Electric Taxi Considering Spatial Distribution
原文传递
导出
摘要 为提升电动汽车充电站利用率,完善城市充电设施,全面推广电动汽车的应用,对电动出租车的充电需求进行预测。将电动出租车行程数据进行清洗,提取具有研究价值的OD数据,与城市POI兴趣点、路网系统融合,得出电动出租车的出行规律、空间分布特征。根据城市近6年电动出租车的历史保有量数据和发展态势,通过灰色预测模型得到城市未来8年电动出租车保有量预测值。考虑电动出租车出行特征、耗电情况及各区域充电桩功率情况,建立符合实际情况的充电需求预测模型,通过蒙特卡洛方法对电动出租车充电行为进行模拟。对仿真结果进行分析,得出基于空间分布的电动出租车中长期充电需求情况。 In order to improve the utilization rate of electric vehicle charging stations,improve urban charging facilities,and comprehensively promote electric vehicles,the charging demand of electric taxis was predicted.The travel data of electric taxis were cleaned and integrated with POI interest points and road network system to obtain the spatial distribution characteristics of electric taxis.According to the data of electric taxi ownership in the city in the past six years,the prediction value of electric taxi ownership in the next eight years was obtained through the grey prediction model.Considering the travel characteristics,power consumption and charging pile power of electric taxi in each region,the charging demand of electric taxi was simulated and predicted by monte carlo method.The simulation results were analyzed,and the medium and long-term charging demand of electric taxi based on spatial and temporal distribution was obtained.
作者 阎春利 刘嘉玲 陈爽 YAN Chun-li;LIU Jia-ling;CHEN Shuang(School of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China)
出处 《武汉理工大学学报》 CAS 2023年第11期106-114,131,共10页 Journal of Wuhan University of Technology
基金 中央高校基本科研业务费专项资金(2572014CB19).
关键词 电动出租车 行程数据 灰色预测 充电需求预测 蒙特卡洛 electric taxi trip data gray prediction charging demand forecast monte carlo
  • 相关文献

参考文献10

二级参考文献116

  • 1邢强,陈中,冷钊莹,陆舆,刘艺.基于实时交通信息的电动汽车路径规划和充电导航策略[J].中国电机工程学报,2020,40(2):534-550. 被引量:80
  • 2湛东升,张文忠,张娟锋,李佳洺,谌丽,党云晓.北京市公共服务设施集聚中心识别分析[J].地理研究,2020,0(3):554-569. 被引量:30
  • 3刘宛.精微公共空间与活力城市生活——关于老城区精治的思考[J].北京规划建设,2019,0(S02):155-160. 被引量:6
  • 4Electric Vehicles Initiative ( EVI ). Globe EV outlook: understanding the electric vehicle landscape to 2020[R]. 2013.
  • 5Energy saving and new energy automobile industry planning [EB/OL]. [2015-04-25]. http://www, gov. cn/zwgk/2012 07/ 09/content 2179032.htrn.
  • 6RAZEGHI G, ZHANG L, BROWN T, et al. Impacts of plug in hybrid electric vehicles on a residential transformer using stochastic and empirical analysis[J]. Journal of Power Sources, 2014, 252: 277-285.
  • 7CLEMENT K, HAESEN E, DRIESEN J, et al. The impact of charging plug in hybrid electric vehicle on a residential distribution grid[J]. IEEE Trans on Power Systems, 2010, 25(1) : 371-380.
  • 8MASOUM A S, DEILAMI S, MOSES P S, et al. Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage regulation [J]. IET Generation, Transmission & Distribution, 2011, 5(8): 877- 888.
  • 9ASHTARI A, BIBEAU E, SHAHIDINEJAD S, et al. PEV charging profile prediction and analysis based on vehicle usage data[J]. IEEE Trans on Smart Grid, 2012, 3(1): 341-350.
  • 10TASCIKARAOGLU A, UZUNOGLU M. A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 243-254.

共引文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部