期刊文献+

频率可调谐的双偏振非对称传输器件

Frequency-tunable dual-polarization asymmetric transmission component
下载PDF
导出
摘要 为了研究太赫兹超构材料的可调谐非对称传输特性,本文基于相变原理提出一种类S型的双层结构,采用有限积分算法求解其偏振传输特性。利用温度调控二氧化钒的相变特性,实现了频率可调谐的双偏振非对称传输效应。在宽角度入射范围内,45°线偏振光的非对称传输特性保持着较高的工作效率,倾斜入射角为60°时,效率优于0.4,且绝缘态和金属态下的谐振频率几乎保持不变,谐振频率的可调谐度为16.3%。本文所提出的频率可调谐双偏振非对称传输器件在偏振调控、太赫兹通信和太赫兹芯片领域具有潜在的应用前景。 We propose a type of phase transition-based analogous S-type bilayer metamaterial to investigate the tun-able asymmetric transmission of terahertz metamaterial.A finite integral algorithm is used to solve the polarization properties.The phase transition of embedded vanadium dioxide films enables frequency-tunable dual-polarization asymmetric transmission.Furthermore,the asymmetric transmission property of 45°linearly polarized light may maintain a high efficiency over a wide range of incident angles.The efficiency is more than 0.4 at an incident angle of 60°.Moreover,the resonant frequency almost remains constant in the insulating and metallic states,and the tun-ability of the resonant frequency is 16.3%.The proposed frequency-tunable dual-polarization asymmetric transmis-sion component has potential application prospects in the fields of polarization control,terahertz communication,and terahertz chips.
作者 吕婷婷 刘东明 付天舒 史金辉 LYU Tingting;LIU Dongming;FU Tianshu;SHI Jinhui(School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China;College of Physics and Optoelectronic Engineering,Harbin Engineering University,Harbin 150001,China;College of Physics and Optoelectronic Engi-neering,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期415-422,共8页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(62275061).
关键词 超构材料 非对称传输 相变原理 二氧化钒 偏振调控 宽角度 频率可调谐 太赫兹 metamaterial asymmetric transmission phase transition principle vanadium dioxide polarization con-trol wide angle frequency tunable terahertz
  • 相关文献

参考文献2

二级参考文献2

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部