摘要
为研究硝酸酯增塑聚醚(NEPE)推进剂药柱固化与降温过程中残余应力/应变的形成机制,基于ABAQUS有限元软件对推进剂在固化与降温过程中的温度场、固化度场和应力/应变场进行数值分析。结果表明,NEPE推进剂药柱在50℃高温固化过程中,药柱内部存在温度梯度与固化速率梯度,药柱截面中心位置温度与固化速率较高,但在固化完成时内部固化度趋于一致,药柱内部的温差不会影响药柱最终的残余应力和残余应变;NEPE推进剂药柱在固化与降温2个阶段中,总残余应力/应变基本符合应力/应变叠加原理,药柱的残余应力/应变主要由固化收缩应力/应变与降温过程产生热应力/应变构成,总残余应力在这两阶段占比分别约为20%与80%,总残余应变占比分别约为30%与70%;本方法获得的残余应力/应变与传统采用温度折算方法计算结果分布趋势基本一致,但计算结果整体偏小。
To study the formation mechanism of residual stress/strain of the nitrate ester plasticized polyether(NEPE)propellant grain during the curing and cooling stages,the temperature field,curing degree field and stress/strain field of the propellant were numerically analyzed via ABAQUS finite element software.The results show that there are temperature gradient and curing rate gradient in the NEPE propellant grain during the curing process at 50℃.The temperature and the curing rate are notably higher at the center of the grain,and they eventually reach a consensus at the end of curing.The temperature difference in the propel⁃lant does not affect the final residual stress/strain.The total residual stress/strain during curing and cooling obey the principle of stress/strain superposition,and they are mainly composed of the curing shrinkage stress/strain and thermal stress/strain during cooling.For the total residual stress,the proportions of the two stages are approximately 20%and 80%,respectively,and for the total residual strain,the proportions are about 30%and 70%,respectively.Compared with the traditional method,the residual stress/strain calculated in this study have the same distribution characteristics,but the values are smaller.
作者
周东谟
谢旭源
王瑞民
刘向阳
惠步青
ZHOU Dong-mo;XIE Xu-yuan;WANG Rui-min;LIU Xiang-yang;HUI Bu-qing(School of Mechatronic Engineering,North University of China,Taiyuan 030051,China;School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处
《含能材料》
EI
CAS
CSCD
北大核心
2024年第2期193-203,共11页
Chinese Journal of Energetic Materials
关键词
硝酸酯增塑聚醚(NEPE)推进剂
温度场
固化度场
固化降温
残余应力
nitrate ester plasticized polyether(NEPE)propellant
temperature field
curing degree field
curing and cooling
resid⁃ual stress