期刊文献+

稀疏矩阵的概念与应用

The Concept and Application of Sparse Matrices
下载PDF
导出
摘要 稀疏矩阵在数据存储、机器学习、图像处理及文本处理方面有广泛的应用。在数据结构等一些课程中,教材会介绍稀疏矩阵,包括压缩存储方法等内容。由于稀疏矩阵的讲解比较少,理论的内容比较多,案例讲解较少,学生不易理解。为了让学生更好地理解稀疏矩阵及其应用,通过垃圾邮件过滤分类的案例,对比采用稠密型矩阵和稀疏矩阵两种形式,验证稀疏矩阵在存储和训练运算方面的优越性。 Sparse matrix is widely used in data storage,machine learning,image processing and text processing.In some courses,such as data structures,sparse matrices are introduced,including compressed storage methods.Due to less explanation of sparse matrix,more theoretical content,less case explanation,it is difficult for students to understand.In order to give students a better understanding of sparse matrix and its application,this paper compares two forms of dense matrix and sparse matrix through spam filtering classification cases,and verifies the superiority of sparse matrix in storage and training operations.
作者 许春荣 买买提依明·哈斯木 XU Chunrong;MAMTIMIN Kasim(Guangzhou College of Commerce,Guangzhou Guangdong 511363,China)
机构地区 广州商学院
出处 《信息与电脑》 2023年第21期254-256,共3页 Information & Computer
关键词 稀疏矩阵 数据结构 垃圾邮件过滤 案例理解 sparse matrix data structure spam filtering case understanding
  • 相关文献

参考文献4

二级参考文献32

  • 1BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation [J]. The Journal of Machine Learning Research, 2003, 3:993 - 1022.
  • 2BLEI D M, GRIFFITHS T L, JORDAN M I, et al. Hierarchical topic models and the nested Chinese restaurant process [ C]// Ad- vances in Neural Information Processing Systems: Proceedings of the 2003 Conference. Cambridge: MIT Press, 2004, 16:106 -114.
  • 3CHEMUDUGUNTA C, SMYTH P, STEYVERS M. Modeling gener- al and specific aspects of documents with a probabilistic topic model [ C]// Advances in Neural Information Processing Systems: Pro- ceedings of the 2006 Conference. Cambridge: MIT Press, 2007, 19:241.
  • 4MEI Q, LING X, WONDRA M, et al. Topic sentiment mixture: modeling facets and opinions in weblogs [ C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007:171 - 180.
  • 5CANDIES E .l, LI X, MA Y, et al. Robust principal component a- nalysis? [ J]. Journal of the ACM, 2011,58(3) : 11.
  • 6MIN K, ZHANG Z, WRIGHT J, et al. Decomposing background topics from keywords by principal component pursuit [ C]// Pro- ceedings of the 19th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2010:269 - 278.
  • 7LANDAUER T K, FOLTZ P W, LAHAM D. An introduction to la- tent semantic analysis [ J]. Discourse Processes, 1998, 25 (2/3) : 259 - 284.
  • 8LIN Z, CHEN M, MAY. The augmented lagrange multiplier meth- od for exact recovery of corrupted low-rank matrices [ EB/OL]. [2013-08-16]. http://arxiv, org/pdf/1009. 5055v3. pdf.
  • 9BLEI D M, LAFFERTY J D. Dynamic topic models [ C]// Pro- ceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006:113 - 120.
  • 10BLEI D M, LAFFERTY J D. A correlated topic model of science [ J]. The Annals of Applied Statistics, 2007, 1 (1) : 17 - 35.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部