摘要
光电催化分解水可以将充足的太阳能直接转化存储为绿色清洁的氢能,然而光阳极表面缓慢的析氧反应动力学严重限制了太阳能到氢能的转化效率.我们通过一种简单的S―O键合策略实现BiVO_(4)光阳极与FeNi催化剂的界面耦合(S:BiVO_(4)-FeNi),其光电催化分解水的光电流达到6.43 mA∙cm^(−2)(1.23 VRHE,AM 1.5 G).进一步研究结果表明:界面S―O键合能够有效实现BiVO_(4)光阳极光生电荷分离并促进空穴向FeNi催化剂表面迁移.同时,S―O键合可以进一步调控FeNi催化剂表面的电荷分布,从而有效提高光电化学分解水析氧活性和稳定性.该工作为设计构建具有高效、稳定的太阳能光电催化分解水体系提供了一种新的研究策略.
Photoelectrochemical(PEC)water splitting has been regarded as a promising approach to convert abundant sunlight into clean and renewable hydrogen fuels.However,the sluggish oxygen evolution reaction(OER)kinetics greatly restricted the PEC efficiencies for solar-to-hydrogen conversion.Herein,we demonstrated a facile interfacial coupling strategy for bonding BiVO_(4)photoanodes and FeNi catalysts with sulfur-oxygen(denoted as S:BiVO_(4)-FeNi),which exhibited a much high photocurrent of 6.43 mA∙cm^(−2)(at 1.23 V vs.reversible hydrogen electrode(RHE),AM 1.5 G).Further experimental and characterization studies reveal that the interfacial sulfur-oxygen bonding could effectively promote the charge separation and subsequent hole transfer from BiVO_(4)photoanodes to FeNi catalysts.Additionally,the sulfur-oxygen could also regulate the surface charge distribution of FeNi catalysts for enhancing PEC water oxidation activity and stability.Thereby,this work provides a new and effective strategy for developing high-performance and stable photoanodes for PEC water splitting applications.
作者
张珍珍
毕迎普
ZHANG Zhen-zhen;BI Ying-pu(State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《分子催化》
CAS
CSCD
北大核心
2023年第6期535-544,I0001,共11页
Journal of Molecular Catalysis(China)
基金
国家重点研发计划项目(2022YFB3803600)。