期刊文献+

基于超图的阿尔茨海默病辅助诊断研究现状与进展

Research work and progress of aided diagnosis of Alzheimer’s disease based on hyper graph
下载PDF
导出
摘要 阿尔茨海默病(Alzheimer's Disease,AD)等神经变性疾病普遍存在,记忆危机日益严重,因此对于早期AD辅助诊断的需求十分迫切。医学影像技术是前期辅助AD筛查的一种有效手段,其中超图在对AD分类任务中表现突出。在超图中,超边可以连接多个节点,这使得超图更适用于表示复杂的关系和结构。在医学影像技术中,超图能够更加准确地建模多元关系,具备较强的数据样本间非线性高阶关联的刻画和挖掘能力。汇总了基于脑功能超网络的研究成果,重点介绍了图核、矩阵分析、深度学习这3种方法,最后对未来的发展进行展望,为后续研究提供参考。 With the prevalence of neurodegenerative diseases such as Alzheimer's disease(AD)and the growing memory crisis,there is a significant need for early AD based diagnostic aids.Medical imaging technology is an effective tool to assist in AD screening in the early stages,where hypergraphs excel in the task of classifying AD.In hypergraphs,hyperedges can connect multiple nodes,which makes hypergraphs more suitable for representing complex relationships and structures.In medical imaging technology,hypergraphs are able to model multivariate relationships more accurately,with a strong ability to portray and mine nonlinear higher-order associations between data samples.This paper summarises the research results based on brain functional hypernetworks,focusing on three methods:graph kernels,matrix analysis and deep learning,and concludes with an outlook on future developments to provide a reference for subsequent research.
作者 张馨文 毕春慧 董泰歌 李佳霓 信俊昌 Xinwen ZHANG;Chunhui BI;Taige DONG;Jiani LI;Junchang XIN(School of Computer Science and Engineering,Northeastern University,Shenyang,110000,China;College of Medicine and Biological Information Engineering,Northeastern University,Shenyang,110000,China)
出处 《阿尔茨海默病及相关病杂志》 2024年第1期64-71,共8页 Chinese Journal of Alzheimer's Disease and Related Disorders
基金 国家级大学生创新创业训练计划资助项目(230193) 中央高校基本科研业务专项资金(N2224001) 国家自然科学基金(62072089) 中央高校基本科研业务费(N2116016,N2104001,N2019007,N2224001-10)。
关键词 阿尔茨海默病 超图 图核 矩阵分析 深度学习 Alzheimer's disease Hypergraph Graph kernel Matrix analysis Deep learning
  • 相关文献

参考文献5

二级参考文献133

  • 1Supekar K,Menon V,Rubin D,et al.Network analysis of intrinsic functional brain connectivity in Alzheimervs disease[J].PLoS Computational Biology,2008,4(6):e1000100.
  • 2Stam C J,Jones B F,Nolte G,et al.Small-world networks and functional connectivity in Alzheimer’s disease[J].Cerebral Cortex,2007,17(1):92-99.
  • 3Watts D J,Strogatz S H.Collective dynamics of small-world networks[J].Nature,1998,393(6684):440-442.
  • 4Saramki J,KivelM,Onnela J P,et al.Generalizations of the clustering coefficient to weighted complex networks[J].Physical Review E,2007,75(2):027105.
  • 5Barthelemy M.Betweenness centrality in large complex networks[J].The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):163-168.
  • 6Chen Gang,Ward B D,Xie Chunming,et al.Classification of Alzheimer disease,mild cognitive impairment,and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J].Radiology,2011,259(1):213-221.
  • 7Wee C Y,Yap P T,Denny K,et al.Resting-state multi-spectrum functional connectivity networks for identification of MCI patients[J].PLoS ONE,2012,7(5):e37828.
  • 8Jie Biao,Zhang Daoqiang,Wee C Y,et al.Topological graph kernel on multiple thresholded functional connectivity networks for MCI classification[J].Human Brain Mapping,2013,doi:10.1002/hbm.22353.
  • 9Kong Xiangnan,Ragin A,Wang Xue,et al.Discriminative feature selection for uncertain graph classification[C]//Proceedings of Computing Research Repository(CoRR),2013:82-93.
  • 10Kong Xiangnan,Yu P S.Multi-label feature selection for graph classification[C]//Proceedings of the 10th IEEE International Conference on Data Mining(ICDM 10),Sydney,Australia,2010.Piscataway,NJ,USA:IEEE,2010:274-283.

共引文献2040

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部