期刊文献+

追踪调查中的样本更新问题研究——部分国际追踪调查的实践经验总结及思考

Sample Refreshing for Longitudinal Surveys:Review and Discussion of International Longitudinal Survey Practices
下载PDF
导出
摘要 社会科学研究中,经常需要对样本成员进行长期甚至终身追访,以揭示现象的变化和发展规律、有效识别现象间的因果关系,同时估计截面总体特征也是关注的重点。追踪调查数据在研究变量变化规律、识别变量间因果关系等方面具有显著优势,在社会科学研究中得到广泛应用。然而,随着追访轮次的增加,受无回答和样本成员死亡的影响,追踪样本会出现样本损耗、低年龄组代表性不足等问题。此外,由于移民和新生总体的加入,截面总体不断变化。因此,利用追踪样本估计截面总体会面临潜在的偏差,包括无回答偏差和涵盖偏差。为了减少这些偏差,国际上多数追踪调查项目均定期或不定期从总体或子总体中抽取更新样本,并将其和追踪样本整合起来,以估计截面总体特征,即对追踪样本进行样本更新。尽管我国追踪调查项目取得一定发展,但国内却鲜有文献对此问题进行讨论。本文通过梳理部分国际知名追踪调查的抽样设计方案和技术文档,对样本更新的总体范围、更新频率、更新样本的抽取方法、追踪样本和更新样本整合方法的实践经验进行归纳和总结,并指出潜在的问题及需要加强研究的方向,为我国追踪调查实践提供经验和理论上的支撑。 In social science research,in order to reveal the patterns of change and development of a phenomenon and effectively identify the causal relationships between phenomena,it is often necessary to follow sample members for a long period,sometimes even throughout their lifetime.Additionally,estimating the overall characteristics of the cross-sectional population is also the major concern.Longitudinal survey data have distinct advantages in studying the change of social patterns and identifying the causal relationships between variables,which is why it has been used widely in social science research.However,as follow-up waves increase,longitudinal sample is threatened by the attrition due to non-response and death of sample members,as well as underrepresentation in the young age group.Moreover,cross-sectional population constantly changes from wave to wave due to immigration,emigration and the inclusion of new-birth population.Consequently,using follow-up samples to estimate the cross-sectional population may introduce potential bias,including non-response bias and coverage bias.To reduce those potential biases,most international longitudinal survey programs regularly or irregularly draw a refreshment sample from cross-sectional population or sub-population.Those refreshment samples are then integrated with on-going sample to estimate the cross-sectional population characteristics.This procedure is known as sample refreshing.Although China has made some progress in developing longitudinal survey programs,there is limited literature addressing this issue in China.This paper aims to summarize the practical experiences of sample refreshing,including the coverage scope and frequency of sample refreshing,refreshment sampling methods,and integration methods for on-going sample and refreshment sample,by reviewing the sampling design schemes and relevant documents from some well-known international longitudinal surveys.This paper also highlights potential problems with existing methods and identifies areas for further research.The goal is to provide practical experience and theoretical support for longitudinal survey practices in China.
作者 王俊 金勇进 王亚峰 赵耀辉 Wang Jun;Jin Yongjin;Wang Yafeng;Zhao Yaohui
出处 《统计研究》 CSSCI 北大核心 2024年第1期124-134,共11页 Statistical Research
基金 国家自然科学基金国际合作项目“生活方式对老年认知损害和失智症的影响研究:基于中英可比健康养老追踪调查”(72061137005) 美国国家老龄化研究所项目“CHARLS全国追踪调查”(R01-AG037031) 国家社会科学基金项目“复杂抽样数据的统计推断方法及其应用研究”(19BTJ012)。
关键词 追踪调查 更新样本 样本整合 新生总体 截面权数 Longitudinal Survey Refreshment Sample Sample Integration New-birth Population Cross-sectional Weights
  • 相关文献

参考文献1

二级参考文献9

  • 1Rubin D B Little R J A. Statistical analysis with missing data[M]. John Wiley & Sons, Inc, 2002.
  • 2DiggleP Kenward M G. Informative dropout in longitudinal data analysis[J]. Appied Statistics, 1994(1 ) :49 -93.
  • 3Hogan J W. Laird N M Mixture models for the joint distribution of repeated measures and event times [J]. Statistics in Medicine, 1997 (3) :239 - 257.
  • 4Hedeker D. Gibbons R D. Longitudinal data analysis[M]. John Wiley & Sons, Inc 2006. 295 -304.
  • 5Wu M C Carroll R J Estimation and Comparison of Changes in the Presence of Informative Right Censoring Process [J]. Biometrics, 1988(1): 175-188.
  • 6Xu L. Shao J. Estimation in longitudinal or panel data models with random-effect-based missing responses[J]. Biometrics, 2009 (4) : 1175 - 1183.
  • 7Little R J A. Modeling thee drop-out mechanism in repeated- measures studies [J]. Journal of the American Statistical Association, 1995(431): 1112-1121.
  • 8Agresti A Analysis of Categorical Data [M] , 2nd edition. New York: Wiley, 2002.
  • 9Pinheiro J C Bates D M Approximations to the loglikelihood function in the nonlinear mixed-effects model[J]. Journal of Computational and Graphical Statistics, 1995 ( 1 ) : 12 - 35.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部