期刊文献+

典型抗生素冲击对黄铁矿/硫基质反硝化修复体系的影响

Effects of typical antibiotics on denitrifying performance in the pyrite/sulfur-based remediation system
下载PDF
导出
摘要 为探究典型抗生素冲击对黄铁矿/硫混合基质(FeS_(2)/S^(0))修复体系反硝化过程的影响,本文以地下水中检出率较高的磺胺类(磺胺甲噁唑(SMZ)和磺胺嘧啶(SDZ))、氟喹诺酮类(恩诺沙星(ENR)和氧氟沙星(OFL))、四环素类(四环素(TCY)和土霉素(OTC))及大环内酯类(红霉素(ERY)和螺旋霉素(SPM))作为典型抗生素,设置其浓度为100ng/L~500μg/L,建立模拟地下水微生态环境实验体系,分别研究其对FeS_(2)/S^(0)修复体系反硝化过程中氮素、可溶性总铁(TFe)、游离Fe^(2+)、硝酸盐还原酶(NAR)、亚硝酸盐还原酶(NIR)与电子传递活性(ETSA)等的变化特征,同时以无抗生素的体系作为空白対照组.结果表明,抗生素对各体系反硝化抑制作用与其种类及浓度密切相关:抑制程度依次为OFL (抑制率5.81%~27.73%)>ENR (3.06%~14.17%)、OTC (1.95%~14.25%)>SMZ (2.54%~11.75%)、SDZ (1.87%~10.90%)>TCY (1.98%~9.44%)、SPM (2.45%~9.43%)>ERY (2.13%~8.47%),抑制率和浓度呈正相关.各实验组中NO_(2)^(-)-N去除速率低于NO_(2)^(-)-N生成速率,NAR和NIR活性均呈现先增后降的单峰变化规律,其酶活峰值均低于空白组;各反应体系中SO_(4)^(2-)-S、TFe与Fe^(2+)浓度与NO_(3)^(-)-N去除率呈正相关,各浓度水平下OFL实验组对反硝化效能抑制最为显著.与空白组相比,各实验体系的ETSA值均有不同程度的下降,尤其是OFL胁迫体系的ETSA值下降幅度最大.硝酸盐还原动力学系数k表明,ng/L水平抗生素各反应体系中的k值差别不大,而μg/L浓度水平时,各反应体系中k值差异明显,OFL反应体系的k值明显低于其他反应体系. In order to evaluate the performance of denitrification process in the pyrite/sulfur-based remediation system(FeS_(2)/S^(0))under different types of typical antibiotics,sulfonamides(sulfamethoxazole(SMZ)and sulfadiazine(SDZ)),fluoroquinolones(enrofloxacin(ENR)and ofloxacin(OFL)),tetracycline(tetracycline(TCY)and oxytetracycline(OTC)),macrolides(erythromycin(ERY)and spiramycin(SPM))which are usually highly detected in groundwater were taken as typical antibiotics with a set range of concentrations from 100ng/L to 500ug/L.Based on the simulated groundwater microcosm experimental system in this study,the changes in nitrogen,nitrate reductase(NAR),nitrite reductase(NIR)and electron transfer activity(ETSA)during the denitrification in the FeS_(2)/S^(0) remediation system were investigated.The results show that denitrifying inhibition effect was significantly associated with concentration and species of antibiotic at the order of inhibition degree as:OFL(5.81%~27.73%)>ENR(3.06%~14.17%),OTC(1.95%~14.25%)>SMZ(2.54%~11.75%),SDZ(1.87%~10.90%)>TCY(1.98%~9.44%),SPM(2.45%~9.43%)>ERY(2.13%~8.47%),and the higher the concentration,the greater the level of inhibition.In all experimental groups,the removal rate of NO2--N was lower than that of NO^(3)^(-)-N,the activity of both NAR and NIR increased and then decreased,resulting in a single peak change with the greatest reduction.There was a positive correlation of the removal rate of NO^(3)^(-)-N to the concentrations of SO_(4)^(2-)-S,TFe and Fe^(2+)in effluent.The most significant denitrification inhibition occurred in OFL interrupting groups.Contrasting to the control group,the average value of ETSA in each experimental system(especially in the OFL stressing group)decreased.Meanwhile,the k value in each reaction system of antibiotics did not change much at the ng/L level but varied significantly at theμg/L concentration level,and the k value was significantly lower in the OFL reaction system than in other reaction systems.
作者 曹惜霜 信欣 杨雯钰 刘鑫 潘先兵 CAO Xi-shuang;XIN Xin;YANG Wen-yu;LIU Xin;PAN Xian-bing(School of Resources and Environment,Chengdu University of Information Technology,Chengdu 610225,China;Engineering Research Center of Groundwater Pollution Control and Remediation,Ministry of Education,Beijing Normal University,Beijing 100875,China)
出处 《中国环境科学》 EI CAS CSCD 北大核心 2024年第2期793-802,共10页 China Environmental Science
基金 国家自然科学基金资助项目(42377083) 地下水污染控制与修复教育部工程研究中心开放基金资助项目资助(GW202211) 四川省大学生创新创业计划项目(202210621041)。
关键词 地下水 硝酸盐 反硝化 抗生素 酶活性 敏感性 groundwater nitrate denitrification antibiotics enzyme sensitivity
  • 相关文献

参考文献5

二级参考文献98

  • 1阮晓慧,钱雅洁,薛罡,高品.四环素抗生素对污泥中四环素抗性基因丰度和表达水平的作用影响[J].环境科学,2020,41(2):823-830. 被引量:8
  • 2辛明秀,赵颖,周军,高文臣.反硝化细菌在污水脱氮中的作用[J].微生物学通报,2007,34(4):773-776. 被引量:51
  • 3Daughton C H,Ternes T A. Pharmaceuticals and personal care products in the environment:Agents of subtle change[J].{H}Environmental Health Perspectives,1999,(6):907-938.
  • 4Luo Y,Xu L,Rysz M,Wang Y Q Zhang H Alvarez P J J. Occurrence and transport of tetracycline,sulfonamide,quinolone,and macrolide antibiotics in the Haihe River Basin,China[J].{H}Environmental Science and Technology,2011,(5):1827-1833.
  • 5Li W H,Shi Y L,Gao L H,Liu J M Cai Y Q. Occurrence of antibiotics in water,sediments,aquatic plants,and animals from Baiyangdian Lake in North China[J].{H}CHEMOSPHERE,2012,(11):1307-1315.
  • 6Kumar R R,Lee J T,Cho J Y. Fate,occurrence,and toxicity of veterinary antibiotics in environment[J].Journal of the Korean Society for Applied Biological Chemistry,2012,(6):701-709.
  • 7Silva B F D,Jelic A,Rebeca L S,Mozeto A A Petrovic M Barceló D. Occurrence and distribution of pharmaceuticals in surface water,suspended solids and sediments of the Ebro River Basin,Spain[J].{H}CHEMOSPHERE,2011,(8):1331-1339.
  • 8Hoa P T P,Managaki S,Nakada N,Takada H Shimizu A Anh D H Viet P H Suzuki S. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam[J].{H}Science of the Total Environment,2011,(15):2894-2901.
  • 9Oluyege J O,Dada A C,Odeyemi A T. Incidence of multiple antibiotic resistant gram-negative bacteria isolated from surface and underground water sources in south western region of Nigeria[J].{H}Water Science and Technology,2009,(10):1929-1934.
  • 10Sanderson H,Brain R A,Johnson D J,Wilson C J Solomon K R. Toxicity classification and evaluation of four pharmaceuticals classes:Antibiotics,antineoplastics,cardiovascular,and sex hormones[J].{H}TOXICOLOGY,2004.27-40.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部