摘要
为了更深入地理解沉箱结构对波浪传播和反射的影响,对波浪与开孔沉箱相互作用进行数值模拟研究,为探究消浪效果最佳的沉箱上部开孔位置,通过基于SPH方法建立的数值波浪水槽,分析了3种不同开孔位置对反射系数Kr、波面高度变化、涡量场及流场的影响,总结了不同开孔位置对消浪效果的影响。研究发现当上部开孔的顶端在水下0.08 m时沉箱反射系数Kr最小,沉箱外的波面高度变化最小,开孔沉箱开孔处的涡量消耗的总量最大,流场变化最大是其他2种开孔位置的1~2倍,同时沉箱内波面最为平静,消浪效果最好。所得结论对开孔沉箱实际工程中消浪效果研究具有一定的参考意义。
In order to gain a deeper understanding of the influence of caisson structures on wave propagation and reflection,the numerical simulation was employed to investigate the interaction between waves and perforated caissons.To explore the optimal open hole location for wave attenuation effects,a numerical wave flume based SPH method was established to analyze the effects of three different open hole locations on the reflection coefficient Kr,wave surface elevation variation,vorticity field,and flow field.The influence of different open hole locations on wave attenuation effects was summarized.The study reveals that the caisson has the smallest reflection coefficient Kr and the least variation in wave surface elevation outside the caisson when the top of the opening is submerged 0.08 m underwater.Moreover,the open hole location in the caisson exhibits the highest total vorticity consumption and the flow field variation is 1-2 times higher than the other two open hole locations,resulting in the calmest wave surface in the caissons and the best wave attenuation effects.The obtained conclusions provide certain guiding significance for the study of wave attenuation effects in practical engineering applications of perforated caissons.
作者
刘枫
甘忠勇
王坤
韩丽影
谷雪清
金瑞佳
LIU Feng;GAN Zhong-yong;WANG Kun;HAN Li-ying;GU Xue-qing;JIN Rui-jia(Nanjing Waterway Engineering Bureau of Yangtze River,Nanjing,Jiangsu 210000,China;School of Port,Coastal and Offshore Engineering,Hohai University,Nanjing,Jiangsu 210098,China;Tianjin Institute of Water Transport Engineering of Ministry of Transport,Tianjin 300456,China)
出处
《中国港湾建设》
2024年第2期13-20,43,共9页
China Harbour Engineering
基金
国家自然科学基金项目(U21A20123)
中央级公益性科研院所科研创新基金项目(TKS20230106)。
关键词
开孔沉箱
SPH方法
消浪效果
开孔位置
perforated caissons
SPH method
wave attenuation effect
open hole location