摘要
目的构建急性冠脉综合征(ACS)患者经皮冠状动脉介入治疗(PCI)术后发生主要不良心血管事件(MACE)的预测模型。方法回顾性分析2020年7月—2022年12月于南阳市第一人民医院进行PCI手术的214例ACS患者的病历资料,根据术后6个月随访结果将患者分为MACE组(37例)和无MACE组(177例)。比较两组患者一般资料以及实验室指标差异;logistic回归分析构建预测模型,Hosmer-Lemeshow检验评估模型拟合度;受试者操作特性曲线(ROC)分析验证模型的预测效能。结果两组患者间心功能分级、合并高血压患者例数、有吸烟史例数、ACS类型、支架使用数量以及低密度脂蛋白-胆固醇(low density lipoprotein,LDL-C)、血红蛋白(hemo-globin,Hb)、脂蛋白a[lipoprotein a,Lp(a)]、氨基末端脑钠肽前体(N terminal pro B type na-triuretic peptide,NT-proBNP)水平差异有统计学意义(P<0.05);风险预测模型:Logit(P)=1.688×合并高血压+0.399×支架使用数量+0.929×LDL-C-0.126×Hb+0.034×Lp(a)+0.006×NT-proBNP,Hosmer-Lemeshow检验显示诊断模型的拟合度良好(χ^(2)=6.535,P=0.588);ROC分析提示该模型具有较好的预测效能(P<0.05),预测MACE发生的曲线下面积为0.929。结论影响ACS患者PCI术后MACE发生的因素有合并高血压患者例数、支架使用数量以及LDL-C、Hb、Lp(a)、NT-proBNP水平,临床需密切关注患者术后相关指标变化情况,及时进行干预。
Objective To construct the prediction model for major adverse cardiovascular events(MACE)in patients with acute coronary syndromes(ACS)after percutaneous coronary intervention(PCI).Methods A retrospective analy-sis was performed on the case data of 214 patients with ACS undergoing PCI in Nanyang the First People's Hospital be-tween July 2020 and December 2022.According to follow-up results at 6 months after surgery,they were divided into MACE group(37 cases)and non-MACE group(177 cases).The differences of general data and laboratory indexes were compared between the two groups.The prediction model was constructed by logistic regression analysis,and the model fit was evaluated by Hosmer-Lemeshow test.The predictive efficiency of the model was verified by receiver oper-ating characteristic(ROC)curves analysis.Results There were significant differences in cardiac function grading,number of cases with hypertension and smoking history,ACS types,use number of stents and levels of LDL-C,Hb,Lp(a)and NT-proBNP between the two groups(P<0.05).The risk prediction model was as follow:Logit(P)=1.688×hypertension+0.399×use number of stents+0.929×LDL-C-0.126×Hb+0.034×Lp(a)+0.006×NT-proBNP,Hosmer-Lemeshow test showed that the model fit was good(χ^(2)=6.535,P=0.588).ROC curves a-nalysis indicated that predictive efficiency of the model was good(P<0.05),and the area under the curve of the model for predicting MACE was 0.929.Conclusion The influencing factors of MACE include number of cases with hyperten-sion,use number of stents and levels of LDL-C,Hb,Lp(a)and NT-proBNP in ACS patients after PCI.Clinically,it is necessary to pay close attentions to the changes of postoperative relevant indexes and conduct timely intervention.
作者
何佩
刘燕
HE Pei;LIU Yan(Department of Cardiovascular,Nanyang the First People's Hospital,Nanyang,Henan 473000,China)
出处
《医药论坛杂志》
2023年第23期56-60,共5页
Journal of Medical Forum
关键词
急性冠脉综合征
经皮冠状动脉介入治疗
不良心血管事件
预测模型
Acute coronary syndrome
Percutaneous coronary intervention
Major adverse cardiovascular event
Prediction model