期刊文献+

面向城市轨道交通运营管理的短时进站客流预测研究

Research on short-term inbound passenger flow prediction for urban rail transit operation management
下载PDF
导出
摘要 在使用数据挖掘进行数据预处理的基础上,通过卷积神经网络(CNN)、深度残差神经网络(ResNet)和双向长短时记忆网络(BiLSTM)对客流数据进行分析并生成客流预测数据。结果显示,进行100次训练后的训练损失值为10;进行客流量预测时所得预测结果在0人次到2000人次范围内和真实值基本拟合;评价绝对百分比误差仅为12.77737%。说明研究方法具有较高的训练效率,能较准确地进行面向城市轨道交通运营管理的短时进站客流预测。 On the basis of data preprocessing using data mining,the study analyzes passenger flow data and generates passenger flow forecast data through Convolution Neural Network(CNN),Deep residual network(ResNet)and Bidirectional Long Short-Term Memory Network(BiLSTM).The results show that the training loss value of the research method after 100 times of training is 10.The prediction results obtained during the passenger flow prediction range from 0 to 2000 people are basically fitted with the real value;the absolute percentage error of the evaluation is only 12.77737%.It shows that the research method has high training efficiency and can more accurately predict short-term inbound passenger flow for urban rail transit operation management.
作者 朱小芹 ZHU Xiaoqin(Suzhou Jianshe Transportation Higher Vocational and Technical School,Jiangsu Suzhou 215000 Chin)
出处 《山东交通科技》 2023年第6期93-96,共4页
关键词 轨道交通 客流预测 CNN ResNet BiLSTM rail transit passenger flow prediction CNN ResNet BiLSTM
  • 相关文献

参考文献6

二级参考文献61

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部