摘要
Zirconium-based metal-organic frameworks(Zr-MOFs)have been explored for applications including but not limited to water adsorption,gas storage and separation,heterogeneous catalysis,and chemical sensing.Zr-MOFs serve as a major class of functional MOFs thanks to their high thermal,chemical and hydrolytic stability,large surface area,and tunable structures with the versatile connectivity.In this work,we highlight the design and synthesis of zirconium-based MOFs as well as their applications.Specifically,we demonstrate how reticular chemistry can direct the rational design and synthesis of functional ZrMOFs and describe their structure–property relationship.In addition,we feature synthetic strategies,including isoreticular expansion,linker functionalization,node functionalization,and defect engineering,as toolkits to construct tailored material for specific applications.
基金
support by the National Natural Science Foundation of China (22201247)
the startup funding from Zhejiang University。