期刊文献+

多尺度粒子调控功能复合膜的数值计算

Numerical computational study of multiscale particle controlled functional composite membranes
下载PDF
导出
摘要 以聚碳酸酯基体与荧光粉粒子构成的功能复合膜为研究对象,结合实验和蒙特卡洛计算机数值计算方法,研究了荧光粉粒子粒径和含量对复合膜光通量与色温的影响。结果表明:荧光粉粒子含量相同时,随着粒径增大,光通量表现为先升高后降低的趋势,在粒径为4.0μm时均具有最大值,色温则表现为先降低后升高的趋势;荧光粉粒子粒径相同时,粒径为0.8~4.0μm,光通量与含量表现为正相关趋势,粒径为4.0~16.0μm,光通量与含量表现为负相关趋势;最优组合为原始掺杂荧光粉粒子粒径为8.0μm,质量分数为25%,搭配粒径为4.0μm,质量分数为75%,对应的光通量为139.81 lm,色温为4 257 K。 The functional composite films composed of polycarbonate matrix and phosphor particles were used as the research object to investigate the influence of the particle size and mass fraction of phosphor particles on the luminous flux and color temperature of the composite films by combining experiment and Monte Carlo numerical calculation methods.The research results show that with the increase of particle size the luminous flux increases then decreases,and reaches the maximum value when the particle size is 4.0μm at the same mass fraction of phosphor particles.Under the same particle size between 0.8μm to 4.0μm,the luminous flux and mass fraction of phosphor parlicles show a positive correlation trend;the luminous flux and mass fraction of phosphor parlicles show a negative correlation trend between 4.0μm and 16.0μm of particle size.The optimal values are the size of original phosphor particle is 8.0μm with the mass fraction of 25%,the size of matched phosphor particle is 4.0μm with mass fraction of 75%,the corresponding luminous flux is 139.81 lm and the color temperature is 4257 K.
作者 徐海霞 谢元峰 于小英 Xu Haixia;Xie Yuanfeng;Yu Xiaoying(Xinjiang Shihezi Vocational Technical College,Shihezi 832000,China)
出处 《合成树脂及塑料》 CAS 北大核心 2024年第1期45-47,51,共4页 China Synthetic Resin and Plastics
关键词 聚碳酸酯 功能复合膜 荧光粉粒子 光通量 色温 polycarbonate functional composite film phosphor particle luminous flux color temperature
  • 相关文献

参考文献10

二级参考文献69

  • 1肖华,吕毅军,徐云鑫,朱丽虹,陈国龙,高玉琳,范贤光,薛睿超.传统白光LED与远程荧光粉白光LED的发光性能比较[J].发光学报,2014,35(1):66-72. 被引量:32
  • 2LIU Sheng, LUO Xiao-bing. LED Packaging for Lighting Applications: Design, Manufactur- ing and Testing[ M]. USA: John Wiley & Sons, 2011.
  • 3Zukauskas A, Shur M S, Caska R. Introduction to Solid-State Lighting[ M]. New York, USA: John Wiley & Sons, 2002.
  • 4Pimputkar S, Speck J S, DenBaars S P, Nakamura S. Prospects for LED lighting[ J]. Nature Photonics, 2009, 3(4): 180-182.
  • 5HU Run, YU Shan, ZOU Yong, ZHENG Hai, WANG Fei, LIU Sheng, LUO Xiao-bing. Near-/mid-field effect of color mixing for single phosphor-converted light-emitting diode package [J]. IEEE Photonics Technology Letters, 2013, 25(3): 246-249.
  • 6Dupuis A, Yeomans J M. Lattice Boltzmann modeling of droplets on chemically heterogeneous surfaces[J]. Future Generation Computer Systems, 2004, 20(5): 993-1001.
  • 7Yan Y Y, Zu Y Q. A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio [ J ]. Journal of Computational Physics, 2007, 227 (1) : 763-775.
  • 8Inamuro T, Ogata T, Tajima S, Konishi N. A lattice Boltzmann method for incompressible two-phase flows with large density differences[ J]. Journal of Computational Physics, 2004, 198(2) : 628-544.
  • 9Briant A J, Papatzacos P, Yeomans J M. Lattice Boltzmann simulations of contact line motion in a liquid-gas system[ J]. Philosophical Transactions of the Royal Society of London, Series A, 2002, 360(1792) : 485-495.
  • 10SHAN Xiao-wen, CHEN Hu-dong. Lattice Boltzmann model for simulating flows with multiple phases and components [ J ]. Physical Review E, 1993, 47 ( 3 ) : 1815-1819.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部