期刊文献+

面向链接预测的本地差分隐私图数据建模方法

Local Differential Privacy Graph Data Modeling Method for Link Prediction
下载PDF
导出
摘要 针对工业企业图数据链接预测过程中,节点间的敏感数据面临隐私泄露的问题,以本地差分隐私理论为基础,从链接预测任务表现的角度分析了现有的图数据建模方法在隐私保护上的缺点和不足。提出在个性化采样技术的随机响应机制,减少用户端噪声添加,同时结合两轮数据收集的子图划分策略,保留原始图数据中子图聚集特征,最终实现了一种个性化采样随机响应本地差分隐私(Personalized Sampling Randomized Response Local Differential Privacy, PSRR-LDP)图数据建模算法,理论证明PSRR-LDP算法满足ε-边本地差分隐私。仿真实验结果表明,PSRR-LDP算法在保证隐私的同时具有更优的链接预测效果。 To solve the problem of node sensitive link privacy being exposed in the process of link prediction on industrial business graph data,according to the theory of local differential privacy,the shortcomings of the existing graph privacy protection technology are analyzed from the perspective of link prediction task performance.Based on the existing randomized response mechanism,it introduces the personalized sampling technology to reduce the noise addition on the user side.At the same time,combined with the subgraph partitioning strategy of two rounds of data collection,the subgraph cluster feature of the original graph is retained.Finally,a personalized sampling randomized response local differential privacy(PSRR-LDP)graph data perturbing algorithm was implemented,and the PSRR-LDP algorithm is theoretically proved to satisfy theε-edge Local differential privacy.The simulation experiments show that the PSRR-LDP algorithm has better link prediction performance while ensuring privacy.
作者 韩启龙 吴晓明 HAN Qiong;WU Xiaoming(College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China;Law School,Harbin University of Commerce,Harbin 150028,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2023年第5期51-60,共10页 Journal of Harbin University of Science and Technology
基金 国家重点研发计划(2020YFB1710200) 国家自然科学基金(61872105) 黑龙江省哲学社会科学研究规划项目(19FXE275)。
关键词 隐私保护技术 链接预测 本地差分隐私 个性化采样 图数据收集 privacy-preserving techniques link prediction local differential privacy personalized sampling graph data collection
  • 相关文献

参考文献10

二级参考文献45

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部