摘要
In order to explore an efficient and green method to deal with nitrobenzene(NB)pollutant,reduced graphene oxide(r GO)as an electron shuttle was applied to enhance the extracellular electron transfer(EET)process of Geobacter sulfurreducens,which was a typical electrochemically active bacteria(EAB).In this study,r GO biosynthesis was achieved via the reduction of graphene oxide(GO)by G.sulfurreducens PCA within 3 days.Also,the r GOPCA combining system completely reduced 50-200μmol/L of NB to aniline as end product within one day.SEM characterization revealed that PCA cells were partly wrapped by rGO,and therefore the distance of electron transfer between strain PCA and r GO material was reduced.Beside,the ID/IGof GO,r GO,and r GO-PCA combining system were 0.990,1.293 and 1.31,respectively.Moreover,highest currents were observed in r GO-PCA-NB as 12.950μA/-12.560μA at -408 m V/156 m V,attributing to the faster electron transfer efficiency in EET process.Therefore,the NB reduction was mainly due to:(I)direct EET process from G.sulfurreducens PCA to NB;(II)r GO served as electron shuttle and accelerated electron transfer to NB,which was the main degradation pathway.Overall,the biosynthesis of r GO via GO reduction by Geobacter promoted the NB removal process,which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.
基金
supported by the Science and Technology Innovation Program of Hunan Province(No.2022RC1026)
Shenzhen Science and Technology Program(No.JCYJ20220530160412027)
Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011807)
the Project of the National Key Research and Development Program of China(No.2021YFC1910400)
the Technical Innovation Leading Plan Project for Hunan High-tech Industry(Nos.2020SK2042 and 2022GK4062)
the Key R&D Project of Hunan Province of China(No.2022SK2067)。