期刊文献+

具有几乎链条件的有限p-群

Finite p-groups with an almost chain condition
原文传递
导出
摘要 设t为正整数.若一个有限p-群的所有指数为p^(t)的子群皆交换,且它至少有一个指数为p^(t−1)的非交换子群,则称它为A_(t)-群.若一个A_(t)-群恰有s个指数为p^(t−1)的交换子群,其中s>0,则称它为A^(s)_(t-)群.显然,对于任意有限非交换p-群,一定可找到合适的整数s和t使得它是一个A^(s)_(t-)群.为了深入研究有限非交换p-群,结合A^(s)_(t-)群的结构特点,本文描述具有A^(0)_(t-1)-子群的A_(t)-群的结构,并证明对于任意的A^(s)_(t-)群,若s>1,则s≡1(mod p),进一步地,完全分类所有的A1 t-群. For a positive integer t,a finite p-group is called an A_(t)-group if all its subgroups of index p^(t)are abelian,but it has at least a non-abelian subgroup of index p^(t−1).An A_(t)-group is said to be an A^(s)_(t-)group if it has exactly s abelian subgroups of index p^(t−1),where s>0.For any finite non-abelian p-group,there must be suitable integers s and t such that it is an A^(s)_(t-)group.In order to study finite non-abelian p-groups deeply,combining with the structural characteristics of A^(s)_(t-)groups,we describe the structure of an A_(t)-group having an A^(0)_(t-1)-subgroup.We prove that for any A^(s)_(t-)group,if s>1,then s≡1(mod p),and completely classify the A 1 t-groups.
作者 白鹏飞 郭秀云 王俊新 Pengfei Bai;Xiuyun Guo;Junxin Wang
出处 《中国科学:数学》 CSCD 北大核心 2024年第2期139-160,共22页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:12171302和11801334) 山西省自然科学基金(批准号:202103021224287) 山西省高等学校科技创新项目(批准号:2021L278)资助项目。
关键词 有限P-群 A_(t)-群 A^(s)_(t)- 链条件 finite p-group A_(t)-group A^(s)_(t-)group chain conditi
  • 相关文献

参考文献7

二级参考文献47

  • 1An L J, Hu R F, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅳ). ArXiv:1310.5503.
  • 2Berkovich Y. Groups of Prime Power Order I. Berlin-New York: Walter de Gruyter, 2008.
  • 3Fang X G, An L J. A classification of finite metahamiltonian p-groups. ArXiv:1310.5509.
  • 4Hall M, Senior J K. The Groups of Order 2n (n≤ 6). New York: MacMillan, 1964.
  • 5Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967.
  • 6Qu H P, Xu M Y, An L J. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅲ). ArXiv:1310.5496.
  • 7Qu H P, Yang S S, Xu M Y, et al. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅰ). J Algebra,2012, 358: 178-188.
  • 8Qu H P, Zhao L B, Gao J, et al. Finite p-groups with a minimal non-abelian subgroup of index p (V). J Algebra Appl, submitted.
  • 9Tuan H F. A theorem about p-groups with abelian subgroup of index p. Acad Sinica Science Record, 1950, 3: 17-23.
  • 10Xu M Y. An Introduction to Finite Groups (in Chinese). Beijing: Science Press, 1987.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部