期刊文献+

改进代价计算的AD-Census立体匹配算法 被引量:1

AD-Census Stereo Matching Algorithm Based on Improved Cost Computation
原文传递
导出
摘要 针对现有AD-Census代价计算时,Census变换依赖中心像素,对场景光照、亮度敏感的问题,提出一种基于子区域均匀度变换的改进代价计算方法。对Middlebury数据集在无幅度失真、不同亮度、不同光照场景下的代价计算以及立体匹配实验的统计结果表明,改进后的算法在非遮挡区以及所有区域的误匹配率均低于改进前,在代价计算环节,整体区域平均降低了5.80%,最终立体匹配后的视差图平均降低了1.55%。改进后的算法在不同亮度以及不同光照场景下对匹配的精度提升更加地显著,验证了改进算法的有效性。 Stereo matching is the key section in stereo vision,which includes cost computation,cost aggregation,disparity calculation and disparity optimization.The existing cost com⁃putation of AD-Census relies on the central pixel and is sensitive to scene lighting and brightness.Aiming at the problem,this paper proposes an improved cost computation method based on subregional uniformity.Datasets provided by Middlebury in three different scenes have been used in the experiment of cost com⁃putation and stereo matching.Compared to the AD-Census algorithm,the experimental results show that the improved al⁃gorithm reduces matching error in non-occluded areas and all areas.For cost computation and stereo matching,improved algorithm decreases matching error by an average of 5.80%and 1.55%in all areas.The proposed method enhances the matching accuracy more significantly when the stereo pictures are in different brightness or lighting,which verifies the effectiveness of the improved algorithm and its ability to deal with different scenes.
作者 胡璕 叶世榕 余振宝 黄亮 HU Xun;YE S hirong;YU Zhenbao;HUANG Liang(Guangzhou Urban Planning&Design Survey Research Institute,Guangzhou 510060,China;GNSS Research Center,Wuhan University,Wuhan 430079,China;China Academy of Civil Aviation Science and Technology,Beijing 100028,China)
出处 《测绘地理信息》 CSCD 2024年第1期138-142,共5页 Journal of Geomatics
基金 国家重点研发计划(2019YFC1509603)。
关键词 Census变换 子区域均匀度 改进代价计算 立体匹配 Census transform subregional uniformity improved cost computation stereo matching
  • 相关文献

参考文献12

二级参考文献79

  • 1周秀芝,文贡坚,王润生.自适应窗口快速立体匹配[J].计算机学报,2006,29(3):473-479. 被引量:32
  • 2Scharstein D, Szeliski R. A taxonomy and evaluation of dense two frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1) :7- 42.
  • 3Scharstein D, Szeliski R. The middlebury stereo vision page. [2011. 08. 01]. http://vision, middlebury, edu/ stereo/.
  • 4Fusiello A, Roberto V. Efficient stereo with multiple windowing. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997: 858-863.
  • 5Veksler O. Fast variable window for stereo correspon denceusing integral image. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003, 556-561.
  • 6Zhang K. Cross based local stereo matching using orthogonal integral images. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7) : 1073 -1079.
  • 7Hirschmulle H, Scharstein D. Evaluation of cost functions for stereo matching. 1EEE Computer Society Conference on Computer Vision and Pattern Recognition. 2007.
  • 8Hirschmulle H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelli gence, 2009, 31(9): 1582-1599.
  • 9Yoon K, Kweon S. Locally adaptive support weight approach for visual correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4) : 924-931.
  • 10Tombari F, Mattoccia S. Segmentation based adaptive support for accurate stereo correspondence. IEEE Pacific Rim Symposium on Video and Technology. 2007: 427-438.

共引文献132

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部